Metamath Proof Explorer


Theorem vcidOLD

Description: Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) Obsolete theorem, use clmvs1 together with cvsclm instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses vciOLD.1 G=1stW
vciOLD.2 S=2ndW
vciOLD.3 X=ranG
Assertion vcidOLD WCVecOLDAX1SA=A

Proof

Step Hyp Ref Expression
1 vciOLD.1 G=1stW
2 vciOLD.2 S=2ndW
3 vciOLD.3 X=ranG
4 1 2 3 vciOLD WCVecOLDGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
5 simpl 1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx1Sx=x
6 5 ralimi xX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxxX1Sx=x
7 6 3ad2ant3 GAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxxX1Sx=x
8 4 7 syl WCVecOLDxX1Sx=x
9 oveq2 x=A1Sx=1SA
10 id x=Ax=A
11 9 10 eqeq12d x=A1Sx=x1SA=A
12 11 rspccva xX1Sx=xAX1SA=A
13 8 12 sylan WCVecOLDAX1SA=A