Metamath Proof Explorer


Theorem vn0

Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)

Ref Expression
Assertion vn0 V

Proof

Step Hyp Ref Expression
1 vextru y x |
2 fal ¬
3 1 2 2th y x | ¬
4 xor3 ¬ y x | y x | ¬
5 3 4 mpbir ¬ y x |
6 5 exgen y ¬ y x |
7 exnal y ¬ y x | ¬ y y x |
8 6 7 mpbi ¬ y y x |
9 dfv2 V = x |
10 dfnul4 = x |
11 9 10 eqeq12i V = x | = x |
12 biidd x = y
13 12 eqabbw x | = x | y y x |
14 11 13 bitri V = y y x |
15 8 14 mtbir ¬ V =
16 15 neir V