Metamath Proof Explorer


Theorem vn0

Description: The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008) Avoid ax-8 , df-clel . (Revised by Gino Giotto, 6-Sep-2024)

Ref Expression
Assertion vn0 V

Proof

Step Hyp Ref Expression
1 fal ¬
2 pm5.501
3 2 mptru
4 1 3 mtbi ¬
5 4 exgen y¬
6 exnal y¬¬y
7 5 6 mpbi ¬y
8 df-clab yx|yx
9 sbv yx
10 8 9 bitr2i yx|
11 df-clab yx|yx
12 sbv yx
13 11 12 bitr2i yx|
14 10 13 bibi12i yx|yx|
15 14 albii yyyx|yx|
16 7 15 mtbi ¬yyx|yx|
17 dfcleq x|=x|yyx|yx|
18 dfv2 V=x|
19 18 eqcomi x|=V
20 dfnul4 =x|
21 20 eqcomi x|=
22 19 21 eqeq12i x|=x|V=
23 17 22 bitr3i yyx|yx|V=
24 16 23 mtbi ¬V=
25 24 neir V