Metamath Proof Explorer


Theorem volres

Description: A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014)

Ref Expression
Assertion volres vol=vol*domvol

Proof

Step Hyp Ref Expression
1 resdmres vol*domvol*x|yvol*-1vol*y=vol*yx+vol*yx=vol*x|yvol*-1vol*y=vol*yx+vol*yx
2 df-vol vol=vol*x|yvol*-1vol*y=vol*yx+vol*yx
3 2 dmeqi domvol=domvol*x|yvol*-1vol*y=vol*yx+vol*yx
4 3 reseq2i vol*domvol=vol*domvol*x|yvol*-1vol*y=vol*yx+vol*yx
5 1 4 2 3eqtr4ri vol=vol*domvol