Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The universal class vtocl2d  
				
		 
		
			
		 
		Description:   Implicit substitution of two classes for two setvar variables.
       (Contributed by Thierry Arnoux , 25-Aug-2020)   (Revised by BTernaryTau , 19-Oct-2023) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						vtocl2d.a    ⊢   φ   →   A  ∈  V         
					 
					
						vtocl2d.b    ⊢   φ   →   B  ∈  W         
					 
					
						vtocl2d.1    ⊢    x  =  A    ∧   y  =  B     →    ψ   ↔   χ         
					 
					
						vtocl2d.3    ⊢   φ   →   ψ        
					 
				
					Assertion 
					vtocl2d    ⊢   φ   →   χ        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							vtocl2d.a   ⊢   φ   →   A  ∈  V         
						
							2 
								
							 
							vtocl2d.b   ⊢   φ   →   B  ∈  W         
						
							3 
								
							 
							vtocl2d.1   ⊢    x  =  A    ∧   y  =  B     →    ψ   ↔   χ         
						
							4 
								
							 
							vtocl2d.3   ⊢   φ   →   ψ        
						
							5 
								4 
							 
							adantr   ⊢    φ   ∧   y  =  B     →   ψ        
						
							6 
								3 
							 
							adantll   ⊢     φ   ∧   x  =  A     ∧   y  =  B     →    ψ   ↔   χ         
						
							7 
								6 
							 
							pm5.74da   ⊢    φ   ∧   x  =  A     →     y  =  B    →   ψ    ↔    y  =  B    →   χ          
						
							8 
								4 
							 
							a1d   ⊢   φ   →    y  =  B    →   ψ         
						
							9 
								1  7  8 
							 
							vtocld   ⊢   φ   →    y  =  B    →   χ         
						
							10 
								9 
							 
							imp   ⊢    φ   ∧   y  =  B     →   χ        
						
							11 
								5  10 
							 
							2thd   ⊢    φ   ∧   y  =  B     →    ψ   ↔   χ         
						
							12 
								2  11  4 
							 
							vtocld   ⊢   φ   →   χ