Metamath Proof Explorer


Theorem vtocl4ga

Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019)

Ref Expression
Hypotheses vtocl4ga.1 x=Aφψ
vtocl4ga.2 y=Bψχ
vtocl4ga.3 z=Cχρ
vtocl4ga.4 w=Dρθ
vtocl4ga.5 xQyRzSwTφ
Assertion vtocl4ga AQBRCSDTθ

Proof

Step Hyp Ref Expression
1 vtocl4ga.1 x=Aφψ
2 vtocl4ga.2 y=Bψχ
3 vtocl4ga.3 z=Cχρ
4 vtocl4ga.4 w=Dρθ
5 vtocl4ga.5 xQyRzSwTφ
6 eleq1 x=AxQAQ
7 6 anbi1d x=AxQyRAQyR
8 7 anbi1d x=AxQyRzSwTAQyRzSwT
9 8 1 imbi12d x=AxQyRzSwTφAQyRzSwTψ
10 eleq1 y=ByRBR
11 10 anbi2d y=BAQyRAQBR
12 11 anbi1d y=BAQyRzSwTAQBRzSwT
13 12 2 imbi12d y=BAQyRzSwTψAQBRzSwTχ
14 eleq1 z=CzSCS
15 14 anbi1d z=CzSwTCSwT
16 15 anbi2d z=CAQBRzSwTAQBRCSwT
17 16 3 imbi12d z=CAQBRzSwTχAQBRCSwTρ
18 eleq1 w=DwTDT
19 18 anbi2d w=DCSwTCSDT
20 19 anbi2d w=DAQBRCSwTAQBRCSDT
21 20 4 imbi12d w=DAQBRCSwTρAQBRCSDTθ
22 9 13 17 21 5 vtocl4g AQBRCSDTAQBRCSDTθ
23 22 pm2.43i AQBRCSDTθ