Metamath Proof Explorer


Theorem vtxdgval

Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 10-Dec-2020) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypotheses vtxdgval.v V=VtxG
vtxdgval.i I=iEdgG
vtxdgval.a A=domI
Assertion vtxdgval UVVtxDegGU=xA|UIx+𝑒xA|Ix=U

Proof

Step Hyp Ref Expression
1 vtxdgval.v V=VtxG
2 vtxdgval.i I=iEdgG
3 vtxdgval.a A=domI
4 1 1vgrex UVGV
5 1 2 3 vtxdgfval GVVtxDegG=uVxA|uIx+𝑒xA|Ix=u
6 4 5 syl UVVtxDegG=uVxA|uIx+𝑒xA|Ix=u
7 6 fveq1d UVVtxDegGU=uVxA|uIx+𝑒xA|Ix=uU
8 eleq1 u=UuIxUIx
9 8 rabbidv u=UxA|uIx=xA|UIx
10 9 fveq2d u=UxA|uIx=xA|UIx
11 sneq u=Uu=U
12 11 eqeq2d u=UIx=uIx=U
13 12 rabbidv u=UxA|Ix=u=xA|Ix=U
14 13 fveq2d u=UxA|Ix=u=xA|Ix=U
15 10 14 oveq12d u=UxA|uIx+𝑒xA|Ix=u=xA|UIx+𝑒xA|Ix=U
16 eqid uVxA|uIx+𝑒xA|Ix=u=uVxA|uIx+𝑒xA|Ix=u
17 ovex xA|UIx+𝑒xA|Ix=UV
18 15 16 17 fvmpt UVuVxA|uIx+𝑒xA|Ix=uU=xA|UIx+𝑒xA|Ix=U
19 7 18 eqtrd UVVtxDegGU=xA|UIx+𝑒xA|Ix=U