Metamath Proof Explorer


Theorem vtxduhgrfiun

Description: The degree of a vertex in the union of two hypergraphs of finite size on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 21-Jan-2018) (Revised by AV, 7-Dec-2020) (Proof shortened by AV, 19-Feb-2021)

Ref Expression
Hypotheses vtxduhgrun.i I=iEdgG
vtxduhgrun.j J=iEdgH
vtxduhgrun.vg V=VtxG
vtxduhgrun.vh φVtxH=V
vtxduhgrun.vu φVtxU=V
vtxduhgrun.d φdomIdomJ=
vtxduhgrun.g φGUHGraph
vtxduhgrun.h φHUHGraph
vtxduhgrun.n φNV
vtxduhgrun.u φiEdgU=IJ
vtxduhgrfiun.a φdomIFin
vtxduhgrfiun.b φdomJFin
Assertion vtxduhgrfiun φVtxDegUN=VtxDegGN+VtxDegHN

Proof

Step Hyp Ref Expression
1 vtxduhgrun.i I=iEdgG
2 vtxduhgrun.j J=iEdgH
3 vtxduhgrun.vg V=VtxG
4 vtxduhgrun.vh φVtxH=V
5 vtxduhgrun.vu φVtxU=V
6 vtxduhgrun.d φdomIdomJ=
7 vtxduhgrun.g φGUHGraph
8 vtxduhgrun.h φHUHGraph
9 vtxduhgrun.n φNV
10 vtxduhgrun.u φiEdgU=IJ
11 vtxduhgrfiun.a φdomIFin
12 vtxduhgrfiun.b φdomJFin
13 1 uhgrfun GUHGraphFunI
14 7 13 syl φFunI
15 2 uhgrfun HUHGraphFunJ
16 8 15 syl φFunJ
17 1 2 3 4 5 6 14 16 9 10 11 12 vtxdfiun φVtxDegUN=VtxDegGN+VtxDegHN