Metamath Proof Explorer


Theorem wdom2d2

Description: Deduction for weak dominance by a Cartesian product.MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015)

Ref Expression
Hypotheses wdom2d2.a φ A V
wdom2d2.b φ B W
wdom2d2.c φ C X
wdom2d2.o φ x A y B z C x = X
Assertion wdom2d2 φ A * B × C

Proof

Step Hyp Ref Expression
1 wdom2d2.a φ A V
2 wdom2d2.b φ B W
3 wdom2d2.c φ C X
4 wdom2d2.o φ x A y B z C x = X
5 2 3 xpexd φ B × C V
6 nfcsb1v _ y 1 st w / y 2 nd w / z X
7 6 nfeq2 y x = 1 st w / y 2 nd w / z X
8 nfcv _ z 1 st w
9 nfcsb1v _ z 2 nd w / z X
10 8 9 nfcsbw _ z 1 st w / y 2 nd w / z X
11 10 nfeq2 z x = 1 st w / y 2 nd w / z X
12 nfv w x = X
13 csbopeq1a w = y z 1 st w / y 2 nd w / z X = X
14 13 eqeq2d w = y z x = 1 st w / y 2 nd w / z X x = X
15 7 11 12 14 rexxpf w B × C x = 1 st w / y 2 nd w / z X y B z C x = X
16 4 15 sylibr φ x A w B × C x = 1 st w / y 2 nd w / z X
17 1 5 16 wdom2d φ A * B × C