Metamath Proof Explorer


Theorem wdom2d2

Description: Deduction for weak dominance by a Cartesian product.MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015)

Ref Expression
Hypotheses wdom2d2.a φAV
wdom2d2.b φBW
wdom2d2.c φCX
wdom2d2.o φxAyBzCx=X
Assertion wdom2d2 φA*B×C

Proof

Step Hyp Ref Expression
1 wdom2d2.a φAV
2 wdom2d2.b φBW
3 wdom2d2.c φCX
4 wdom2d2.o φxAyBzCx=X
5 2 3 xpexd φB×CV
6 nfcsb1v _y1stw/y2ndw/zX
7 6 nfeq2 yx=1stw/y2ndw/zX
8 nfcv _z1stw
9 nfcsb1v _z2ndw/zX
10 8 9 nfcsbw _z1stw/y2ndw/zX
11 10 nfeq2 zx=1stw/y2ndw/zX
12 nfv wx=X
13 csbopeq1a w=yz1stw/y2ndw/zX=X
14 13 eqeq2d w=yzx=1stw/y2ndw/zXx=X
15 7 11 12 14 rexxpf wB×Cx=1stw/y2ndw/zXyBzCx=X
16 4 15 sylibr φxAwB×Cx=1stw/y2ndw/zX
17 1 5 16 wdom2d φA*B×C