| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wdom2d2.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | wdom2d2.b |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | wdom2d2.c |  |-  ( ph -> C e. X ) | 
						
							| 4 |  | wdom2d2.o |  |-  ( ( ph /\ x e. A ) -> E. y e. B E. z e. C x = X ) | 
						
							| 5 | 2 3 | xpexd |  |-  ( ph -> ( B X. C ) e. _V ) | 
						
							| 6 |  | nfcsb1v |  |-  F/_ y [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X | 
						
							| 7 | 6 | nfeq2 |  |-  F/ y x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X | 
						
							| 8 |  | nfcv |  |-  F/_ z ( 1st ` w ) | 
						
							| 9 |  | nfcsb1v |  |-  F/_ z [_ ( 2nd ` w ) / z ]_ X | 
						
							| 10 | 8 9 | nfcsbw |  |-  F/_ z [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X | 
						
							| 11 | 10 | nfeq2 |  |-  F/ z x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X | 
						
							| 12 |  | nfv |  |-  F/ w x = X | 
						
							| 13 |  | csbopeq1a |  |-  ( w = <. y , z >. -> [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X = X ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( w = <. y , z >. -> ( x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X <-> x = X ) ) | 
						
							| 15 | 7 11 12 14 | rexxpf |  |-  ( E. w e. ( B X. C ) x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X <-> E. y e. B E. z e. C x = X ) | 
						
							| 16 | 4 15 | sylibr |  |-  ( ( ph /\ x e. A ) -> E. w e. ( B X. C ) x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X ) | 
						
							| 17 | 1 5 16 | wdom2d |  |-  ( ph -> A ~<_* ( B X. C ) ) |