| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wdom2d2.a |
|- ( ph -> A e. V ) |
| 2 |
|
wdom2d2.b |
|- ( ph -> B e. W ) |
| 3 |
|
wdom2d2.c |
|- ( ph -> C e. X ) |
| 4 |
|
wdom2d2.o |
|- ( ( ph /\ x e. A ) -> E. y e. B E. z e. C x = X ) |
| 5 |
2 3
|
xpexd |
|- ( ph -> ( B X. C ) e. _V ) |
| 6 |
|
nfcsb1v |
|- F/_ y [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X |
| 7 |
6
|
nfeq2 |
|- F/ y x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X |
| 8 |
|
nfcv |
|- F/_ z ( 1st ` w ) |
| 9 |
|
nfcsb1v |
|- F/_ z [_ ( 2nd ` w ) / z ]_ X |
| 10 |
8 9
|
nfcsbw |
|- F/_ z [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X |
| 11 |
10
|
nfeq2 |
|- F/ z x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X |
| 12 |
|
nfv |
|- F/ w x = X |
| 13 |
|
csbopeq1a |
|- ( w = <. y , z >. -> [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X = X ) |
| 14 |
13
|
eqeq2d |
|- ( w = <. y , z >. -> ( x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X <-> x = X ) ) |
| 15 |
7 11 12 14
|
rexxpf |
|- ( E. w e. ( B X. C ) x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X <-> E. y e. B E. z e. C x = X ) |
| 16 |
4 15
|
sylibr |
|- ( ( ph /\ x e. A ) -> E. w e. ( B X. C ) x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X ) |
| 17 |
1 5 16
|
wdom2d |
|- ( ph -> A ~<_* ( B X. C ) ) |