Step |
Hyp |
Ref |
Expression |
1 |
|
wdom2d2.a |
|- ( ph -> A e. V ) |
2 |
|
wdom2d2.b |
|- ( ph -> B e. W ) |
3 |
|
wdom2d2.c |
|- ( ph -> C e. X ) |
4 |
|
wdom2d2.o |
|- ( ( ph /\ x e. A ) -> E. y e. B E. z e. C x = X ) |
5 |
2 3
|
xpexd |
|- ( ph -> ( B X. C ) e. _V ) |
6 |
|
nfcsb1v |
|- F/_ y [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X |
7 |
6
|
nfeq2 |
|- F/ y x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X |
8 |
|
nfcv |
|- F/_ z ( 1st ` w ) |
9 |
|
nfcsb1v |
|- F/_ z [_ ( 2nd ` w ) / z ]_ X |
10 |
8 9
|
nfcsbw |
|- F/_ z [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X |
11 |
10
|
nfeq2 |
|- F/ z x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X |
12 |
|
nfv |
|- F/ w x = X |
13 |
|
csbopeq1a |
|- ( w = <. y , z >. -> [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X = X ) |
14 |
13
|
eqeq2d |
|- ( w = <. y , z >. -> ( x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X <-> x = X ) ) |
15 |
7 11 12 14
|
rexxpf |
|- ( E. w e. ( B X. C ) x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X <-> E. y e. B E. z e. C x = X ) |
16 |
4 15
|
sylibr |
|- ( ( ph /\ x e. A ) -> E. w e. ( B X. C ) x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X ) |
17 |
1 5 16
|
wdom2d |
|- ( ph -> A ~<_* ( B X. C ) ) |