Metamath Proof Explorer


Theorem wdom2d2

Description: Deduction for weak dominance by a Cartesian product.MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015)

Ref Expression
Hypotheses wdom2d2.a
|- ( ph -> A e. V )
wdom2d2.b
|- ( ph -> B e. W )
wdom2d2.c
|- ( ph -> C e. X )
wdom2d2.o
|- ( ( ph /\ x e. A ) -> E. y e. B E. z e. C x = X )
Assertion wdom2d2
|- ( ph -> A ~<_* ( B X. C ) )

Proof

Step Hyp Ref Expression
1 wdom2d2.a
 |-  ( ph -> A e. V )
2 wdom2d2.b
 |-  ( ph -> B e. W )
3 wdom2d2.c
 |-  ( ph -> C e. X )
4 wdom2d2.o
 |-  ( ( ph /\ x e. A ) -> E. y e. B E. z e. C x = X )
5 2 3 xpexd
 |-  ( ph -> ( B X. C ) e. _V )
6 nfcsb1v
 |-  F/_ y [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X
7 6 nfeq2
 |-  F/ y x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X
8 nfcv
 |-  F/_ z ( 1st ` w )
9 nfcsb1v
 |-  F/_ z [_ ( 2nd ` w ) / z ]_ X
10 8 9 nfcsbw
 |-  F/_ z [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X
11 10 nfeq2
 |-  F/ z x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X
12 nfv
 |-  F/ w x = X
13 csbopeq1a
 |-  ( w = <. y , z >. -> [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X = X )
14 13 eqeq2d
 |-  ( w = <. y , z >. -> ( x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X <-> x = X ) )
15 7 11 12 14 rexxpf
 |-  ( E. w e. ( B X. C ) x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X <-> E. y e. B E. z e. C x = X )
16 4 15 sylibr
 |-  ( ( ph /\ x e. A ) -> E. w e. ( B X. C ) x = [_ ( 1st ` w ) / y ]_ [_ ( 2nd ` w ) / z ]_ X )
17 1 5 16 wdom2d
 |-  ( ph -> A ~<_* ( B X. C ) )