Metamath Proof Explorer


Theorem wdom2d2

Description: Deduction for weak dominance by a Cartesian product.MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015)

Ref Expression
Hypotheses wdom2d2.a ( 𝜑𝐴𝑉 )
wdom2d2.b ( 𝜑𝐵𝑊 )
wdom2d2.c ( 𝜑𝐶𝑋 )
wdom2d2.o ( ( 𝜑𝑥𝐴 ) → ∃ 𝑦𝐵𝑧𝐶 𝑥 = 𝑋 )
Assertion wdom2d2 ( 𝜑𝐴* ( 𝐵 × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 wdom2d2.a ( 𝜑𝐴𝑉 )
2 wdom2d2.b ( 𝜑𝐵𝑊 )
3 wdom2d2.c ( 𝜑𝐶𝑋 )
4 wdom2d2.o ( ( 𝜑𝑥𝐴 ) → ∃ 𝑦𝐵𝑧𝐶 𝑥 = 𝑋 )
5 2 3 xpexd ( 𝜑 → ( 𝐵 × 𝐶 ) ∈ V )
6 nfcsb1v 𝑦 ( 1st𝑤 ) / 𝑦 ( 2nd𝑤 ) / 𝑧 𝑋
7 6 nfeq2 𝑦 𝑥 = ( 1st𝑤 ) / 𝑦 ( 2nd𝑤 ) / 𝑧 𝑋
8 nfcv 𝑧 ( 1st𝑤 )
9 nfcsb1v 𝑧 ( 2nd𝑤 ) / 𝑧 𝑋
10 8 9 nfcsbw 𝑧 ( 1st𝑤 ) / 𝑦 ( 2nd𝑤 ) / 𝑧 𝑋
11 10 nfeq2 𝑧 𝑥 = ( 1st𝑤 ) / 𝑦 ( 2nd𝑤 ) / 𝑧 𝑋
12 nfv 𝑤 𝑥 = 𝑋
13 csbopeq1a ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ → ( 1st𝑤 ) / 𝑦 ( 2nd𝑤 ) / 𝑧 𝑋 = 𝑋 )
14 13 eqeq2d ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝑥 = ( 1st𝑤 ) / 𝑦 ( 2nd𝑤 ) / 𝑧 𝑋𝑥 = 𝑋 ) )
15 7 11 12 14 rexxpf ( ∃ 𝑤 ∈ ( 𝐵 × 𝐶 ) 𝑥 = ( 1st𝑤 ) / 𝑦 ( 2nd𝑤 ) / 𝑧 𝑋 ↔ ∃ 𝑦𝐵𝑧𝐶 𝑥 = 𝑋 )
16 4 15 sylibr ( ( 𝜑𝑥𝐴 ) → ∃ 𝑤 ∈ ( 𝐵 × 𝐶 ) 𝑥 = ( 1st𝑤 ) / 𝑦 ( 2nd𝑤 ) / 𝑧 𝑋 )
17 1 5 16 wdom2d ( 𝜑𝐴* ( 𝐵 × 𝐶 ) )