| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wdom2d.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
wdom2d.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 3 |
|
wdom2d.o |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) |
| 4 |
|
rabexg |
⊢ ( 𝐵 ∈ 𝑊 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ∈ V ) |
| 5 |
2 4
|
syl |
⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ∈ V ) |
| 6 |
5 1
|
xpexd |
⊢ ( 𝜑 → ( { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } × 𝐴 ) ∈ V ) |
| 7 |
|
csbeq1 |
⊢ ( 𝑧 = 𝑤 → ⦋ 𝑧 / 𝑦 ⦌ 𝑋 = ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑧 = 𝑤 → ( ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ↔ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) ) |
| 9 |
8
|
elrab |
⊢ ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↔ ( 𝑤 ∈ 𝐵 ∧ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) ) |
| 10 |
9
|
simprbi |
⊢ ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } → ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ) → ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) |
| 12 |
11
|
fmpttd |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ⟶ 𝐴 ) |
| 13 |
|
fssxp |
⊢ ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ⟶ 𝐴 → ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ⊆ ( { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } × 𝐴 ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ⊆ ( { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } × 𝐴 ) ) |
| 15 |
6 14
|
ssexd |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ∈ V ) |
| 16 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) ) |
| 17 |
16
|
biimpcd |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑋 → 𝑋 ∈ 𝐴 ) ) |
| 18 |
17
|
ancrd |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑋 → ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 = 𝑋 → ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ) ) |
| 20 |
19
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 → ∃ 𝑦 ∈ 𝐵 ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ) ) |
| 21 |
3 20
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ) |
| 22 |
|
nfv |
⊢ Ⅎ 𝑣 ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) |
| 23 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝑋 |
| 24 |
23
|
nfel1 |
⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 |
| 25 |
23
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 |
| 26 |
24 25
|
nfan |
⊢ Ⅎ 𝑦 ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 27 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑣 → 𝑋 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑦 = 𝑣 → ( 𝑋 ∈ 𝐴 ↔ ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) ) |
| 29 |
27
|
eqeq2d |
⊢ ( 𝑦 = 𝑣 → ( 𝑥 = 𝑋 ↔ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 30 |
28 29
|
anbi12d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ↔ ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) ) |
| 31 |
22 26 30
|
cbvrexw |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋 ) ↔ ∃ 𝑣 ∈ 𝐵 ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 32 |
21 31
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑣 ∈ 𝐵 ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 33 |
|
csbeq1 |
⊢ ( 𝑧 = 𝑣 → ⦋ 𝑧 / 𝑦 ⦌ 𝑋 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝑧 = 𝑣 → ( ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ↔ ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) ) |
| 35 |
34
|
elrab |
⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↔ ( 𝑣 ∈ 𝐵 ∧ ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) ) |
| 36 |
35
|
simprbi |
⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } → ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) |
| 37 |
|
csbeq1 |
⊢ ( 𝑤 = 𝑣 → ⦋ 𝑤 / 𝑦 ⦌ 𝑋 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 38 |
|
eqid |
⊢ ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) = ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) |
| 39 |
37 38
|
fvmptg |
⊢ ( ( 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ∧ ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ) → ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 40 |
36 39
|
mpdan |
⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } → ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 41 |
40
|
eqeq2d |
⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } → ( 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ↔ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 42 |
41
|
rexbiia |
⊢ ( ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ↔ ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) |
| 43 |
34
|
rexrab |
⊢ ( ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ↔ ∃ 𝑣 ∈ 𝐵 ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 44 |
42 43
|
bitri |
⊢ ( ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ↔ ∃ 𝑣 ∈ 𝐵 ( ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋ 𝑣 / 𝑦 ⦌ 𝑋 ) ) |
| 45 |
32 44
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ) |
| 46 |
45
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ) |
| 47 |
|
dffo3 |
⊢ ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } –onto→ 𝐴 ↔ ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } 𝑥 = ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ‘ 𝑣 ) ) ) |
| 48 |
12 46 47
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } –onto→ 𝐴 ) |
| 49 |
|
fowdom |
⊢ ( ( ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) ∈ V ∧ ( 𝑤 ∈ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑋 ) : { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } –onto→ 𝐴 ) → 𝐴 ≼* { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ) |
| 50 |
15 48 49
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ≼* { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ) |
| 51 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ⊆ 𝐵 |
| 52 |
|
ssdomg |
⊢ ( 𝐵 ∈ 𝑊 → ( { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ⊆ 𝐵 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼ 𝐵 ) ) |
| 53 |
51 52
|
mpi |
⊢ ( 𝐵 ∈ 𝑊 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼ 𝐵 ) |
| 54 |
|
domwdom |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼ 𝐵 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼* 𝐵 ) |
| 55 |
2 53 54
|
3syl |
⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼* 𝐵 ) |
| 56 |
|
wdomtr |
⊢ ( ( 𝐴 ≼* { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ∧ { 𝑧 ∈ 𝐵 ∣ ⦋ 𝑧 / 𝑦 ⦌ 𝑋 ∈ 𝐴 } ≼* 𝐵 ) → 𝐴 ≼* 𝐵 ) |
| 57 |
50 55 56
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ≼* 𝐵 ) |