Metamath Proof Explorer


Theorem rexxpf

Description: Version of rexxp with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses ralxpf.1 yφ
ralxpf.2 zφ
ralxpf.3 xψ
ralxpf.4 x=yzφψ
Assertion rexxpf xA×BφyAzBψ

Proof

Step Hyp Ref Expression
1 ralxpf.1 yφ
2 ralxpf.2 zφ
3 ralxpf.3 xψ
4 ralxpf.4 x=yzφψ
5 1 nfn y¬φ
6 2 nfn z¬φ
7 3 nfn x¬ψ
8 4 notbid x=yz¬φ¬ψ
9 5 6 7 8 ralxpf xA×B¬φyAzB¬ψ
10 ralnex zB¬ψ¬zBψ
11 10 ralbii yAzB¬ψyA¬zBψ
12 9 11 bitri xA×B¬φyA¬zBψ
13 12 notbii ¬xA×B¬φ¬yA¬zBψ
14 dfrex2 xA×Bφ¬xA×B¬φ
15 dfrex2 yAzBψ¬yA¬zBψ
16 13 14 15 3bitr4i xA×BφyAzBψ