Metamath Proof Explorer


Theorem wexp

Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)

Ref Expression
Hypothesis wexp.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
Assertion wexp RWeASWeBTWeA×B

Proof

Step Hyp Ref Expression
1 wexp.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
2 wefr RWeARFrA
3 wefr SWeBSFrB
4 1 frxp RFrASFrBTFrA×B
5 2 3 4 syl2an RWeASWeBTFrA×B
6 weso RWeAROrA
7 weso SWeBSOrB
8 1 soxp ROrASOrBTOrA×B
9 6 7 8 syl2an RWeASWeBTOrA×B
10 df-we TWeA×BTFrA×BTOrA×B
11 5 9 10 sylanbrc RWeASWeBTWeA×B