Metamath Proof Explorer


Theorem wexp

Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)

Ref Expression
Hypothesis wexp.1 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st𝑥 ) 𝑅 ( 1st𝑦 ) ∨ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) 𝑆 ( 2nd𝑦 ) ) ) ) }
Assertion wexp ( ( 𝑅 We 𝐴𝑆 We 𝐵 ) → 𝑇 We ( 𝐴 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 wexp.1 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st𝑥 ) 𝑅 ( 1st𝑦 ) ∨ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) 𝑆 ( 2nd𝑦 ) ) ) ) }
2 wefr ( 𝑅 We 𝐴𝑅 Fr 𝐴 )
3 wefr ( 𝑆 We 𝐵𝑆 Fr 𝐵 )
4 1 frxp ( ( 𝑅 Fr 𝐴𝑆 Fr 𝐵 ) → 𝑇 Fr ( 𝐴 × 𝐵 ) )
5 2 3 4 syl2an ( ( 𝑅 We 𝐴𝑆 We 𝐵 ) → 𝑇 Fr ( 𝐴 × 𝐵 ) )
6 weso ( 𝑅 We 𝐴𝑅 Or 𝐴 )
7 weso ( 𝑆 We 𝐵𝑆 Or 𝐵 )
8 1 soxp ( ( 𝑅 Or 𝐴𝑆 Or 𝐵 ) → 𝑇 Or ( 𝐴 × 𝐵 ) )
9 6 7 8 syl2an ( ( 𝑅 We 𝐴𝑆 We 𝐵 ) → 𝑇 Or ( 𝐴 × 𝐵 ) )
10 df-we ( 𝑇 We ( 𝐴 × 𝐵 ) ↔ ( 𝑇 Fr ( 𝐴 × 𝐵 ) ∧ 𝑇 Or ( 𝐴 × 𝐵 ) ) )
11 5 9 10 sylanbrc ( ( 𝑅 We 𝐴𝑆 We 𝐵 ) → 𝑇 We ( 𝐴 × 𝐵 ) )