| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frxp.1 |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) } |
| 2 |
|
ssn0 |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 3 |
|
xpnz |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 4 |
3
|
biimpri |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) |
| 5 |
4
|
simprd |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → 𝐵 ≠ ∅ ) |
| 6 |
2 5
|
syl |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → 𝐵 ≠ ∅ ) |
| 7 |
|
dmxp |
⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
| 8 |
|
dmss |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ) |
| 9 |
|
sseq2 |
⊢ ( dom ( 𝐴 × 𝐵 ) = 𝐴 → ( dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ↔ dom 𝑠 ⊆ 𝐴 ) ) |
| 10 |
8 9
|
imbitrid |
⊢ ( dom ( 𝐴 × 𝐵 ) = 𝐴 → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑠 ⊆ 𝐴 ) ) |
| 11 |
7 10
|
syl |
⊢ ( 𝐵 ≠ ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑠 ⊆ 𝐴 ) ) |
| 12 |
11
|
impcom |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝐵 ≠ ∅ ) → dom 𝑠 ⊆ 𝐴 ) |
| 13 |
6 12
|
syldan |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → dom 𝑠 ⊆ 𝐴 ) |
| 14 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐵 ) |
| 15 |
|
relss |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( Rel ( 𝐴 × 𝐵 ) → Rel 𝑠 ) ) |
| 16 |
14 15
|
mpi |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → Rel 𝑠 ) |
| 17 |
|
reldm0 |
⊢ ( Rel 𝑠 → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
| 19 |
18
|
necon3bid |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅ ) ) |
| 20 |
19
|
biimpa |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → dom 𝑠 ≠ ∅ ) |
| 21 |
13 20
|
jca |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) ) |
| 22 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑣 ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ) ) |
| 23 |
|
vex |
⊢ 𝑠 ∈ V |
| 24 |
23
|
dmex |
⊢ dom 𝑠 ∈ V |
| 25 |
|
sseq1 |
⊢ ( 𝑣 = dom 𝑠 → ( 𝑣 ⊆ 𝐴 ↔ dom 𝑠 ⊆ 𝐴 ) ) |
| 26 |
|
neeq1 |
⊢ ( 𝑣 = dom 𝑠 → ( 𝑣 ≠ ∅ ↔ dom 𝑠 ≠ ∅ ) ) |
| 27 |
25 26
|
anbi12d |
⊢ ( 𝑣 = dom 𝑠 → ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) ↔ ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) ) ) |
| 28 |
|
raleq |
⊢ ( 𝑣 = dom 𝑠 → ( ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ↔ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 29 |
28
|
rexeqbi1dv |
⊢ ( 𝑣 = dom 𝑠 → ( ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ↔ ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 30 |
27 29
|
imbi12d |
⊢ ( 𝑣 = dom 𝑠 → ( ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ) ↔ ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) ) |
| 31 |
24 30
|
spcv |
⊢ ( ∀ 𝑣 ( ( 𝑣 ⊆ 𝐴 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ¬ 𝑐 𝑅 𝑎 ) → ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 32 |
22 31
|
sylbi |
⊢ ( 𝑅 Fr 𝐴 → ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 33 |
21 32
|
syl5 |
⊢ ( 𝑅 Fr 𝐴 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ) |
| 35 |
|
imassrn |
⊢ ( 𝑠 “ { 𝑎 } ) ⊆ ran 𝑠 |
| 36 |
|
xpeq0 |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
| 37 |
36
|
biimpri |
⊢ ( ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
| 38 |
37
|
orcs |
⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
| 39 |
|
sseq2 |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ↔ 𝑠 ⊆ ∅ ) ) |
| 40 |
|
ss0 |
⊢ ( 𝑠 ⊆ ∅ → 𝑠 = ∅ ) |
| 41 |
39 40
|
biimtrdi |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → 𝑠 = ∅ ) ) |
| 42 |
38 41
|
syl |
⊢ ( 𝐴 = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → 𝑠 = ∅ ) ) |
| 43 |
|
rneq |
⊢ ( 𝑠 = ∅ → ran 𝑠 = ran ∅ ) |
| 44 |
|
rn0 |
⊢ ran ∅ = ∅ |
| 45 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
| 46 |
44 45
|
eqsstri |
⊢ ran ∅ ⊆ 𝐵 |
| 47 |
43 46
|
eqsstrdi |
⊢ ( 𝑠 = ∅ → ran 𝑠 ⊆ 𝐵 ) |
| 48 |
42 47
|
syl6 |
⊢ ( 𝐴 = ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) ) |
| 49 |
|
rnxp |
⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) |
| 50 |
|
rnss |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ) |
| 51 |
|
sseq2 |
⊢ ( ran ( 𝐴 × 𝐵 ) = 𝐵 → ( ran 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ↔ ran 𝑠 ⊆ 𝐵 ) ) |
| 52 |
50 51
|
imbitrid |
⊢ ( ran ( 𝐴 × 𝐵 ) = 𝐵 → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) ) |
| 53 |
49 52
|
syl |
⊢ ( 𝐴 ≠ ∅ → ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) ) |
| 54 |
48 53
|
pm2.61ine |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ 𝐵 ) |
| 55 |
35 54
|
sstrid |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) |
| 56 |
|
vex |
⊢ 𝑎 ∈ V |
| 57 |
56
|
eldm |
⊢ ( 𝑎 ∈ dom 𝑠 ↔ ∃ 𝑏 𝑎 𝑠 𝑏 ) |
| 58 |
|
vex |
⊢ 𝑏 ∈ V |
| 59 |
56 58
|
elimasn |
⊢ ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) |
| 60 |
|
df-br |
⊢ ( 𝑎 𝑠 𝑏 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) |
| 61 |
59 60
|
bitr4i |
⊢ ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 𝑎 𝑠 𝑏 ) |
| 62 |
|
ne0i |
⊢ ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
| 63 |
61 62
|
sylbir |
⊢ ( 𝑎 𝑠 𝑏 → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
| 64 |
63
|
exlimiv |
⊢ ( ∃ 𝑏 𝑎 𝑠 𝑏 → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
| 65 |
57 64
|
sylbi |
⊢ ( 𝑎 ∈ dom 𝑠 → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
| 66 |
|
df-fr |
⊢ ( 𝑆 Fr 𝐵 ↔ ∀ 𝑣 ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ) ) |
| 67 |
23
|
imaex |
⊢ ( 𝑠 “ { 𝑎 } ) ∈ V |
| 68 |
|
sseq1 |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( 𝑣 ⊆ 𝐵 ↔ ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) ) |
| 69 |
|
neeq1 |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( 𝑣 ≠ ∅ ↔ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) ) |
| 70 |
68 69
|
anbi12d |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) ↔ ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) ) ) |
| 71 |
|
raleq |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ↔ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
| 72 |
71
|
rexeqbi1dv |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ↔ ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
| 73 |
70 72
|
imbi12d |
⊢ ( 𝑣 = ( 𝑠 “ { 𝑎 } ) → ( ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ) ↔ ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) ) |
| 74 |
67 73
|
spcv |
⊢ ( ∀ 𝑣 ( ( 𝑣 ⊆ 𝐵 ∧ 𝑣 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑣 ∀ 𝑑 ∈ 𝑣 ¬ 𝑑 𝑆 𝑏 ) → ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
| 75 |
66 74
|
sylbi |
⊢ ( 𝑆 Fr 𝐵 → ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
| 76 |
55 65 75
|
syl2ani |
⊢ ( 𝑆 Fr 𝐵 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑎 ∈ dom 𝑠 ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) ) |
| 77 |
|
1stdm |
⊢ ( ( Rel 𝑠 ∧ 𝑤 ∈ 𝑠 ) → ( 1st ‘ 𝑤 ) ∈ dom 𝑠 ) |
| 78 |
|
breq1 |
⊢ ( 𝑐 = ( 1st ‘ 𝑤 ) → ( 𝑐 𝑅 𝑎 ↔ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 79 |
78
|
notbid |
⊢ ( 𝑐 = ( 1st ‘ 𝑤 ) → ( ¬ 𝑐 𝑅 𝑎 ↔ ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 80 |
79
|
rspccv |
⊢ ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( ( 1st ‘ 𝑤 ) ∈ dom 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 81 |
77 80
|
syl5 |
⊢ ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( ( Rel 𝑠 ∧ 𝑤 ∈ 𝑠 ) → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 82 |
81
|
expd |
⊢ ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( Rel 𝑠 → ( 𝑤 ∈ 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) ) |
| 83 |
82
|
impcom |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( 𝑤 ∈ 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 84 |
83
|
adantr |
⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 85 |
|
elrel |
⊢ ( ( Rel 𝑠 ∧ 𝑤 ∈ 𝑠 ) → ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 ) |
| 86 |
85
|
ex |
⊢ ( Rel 𝑠 → ( 𝑤 ∈ 𝑠 → ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 ) ) |
| 87 |
86
|
adantr |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 ) ) |
| 88 |
|
vex |
⊢ 𝑢 ∈ V |
| 89 |
56 88
|
elimasn |
⊢ ( 𝑢 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑢 〉 ∈ 𝑠 ) |
| 90 |
|
breq1 |
⊢ ( 𝑑 = 𝑢 → ( 𝑑 𝑆 𝑏 ↔ 𝑢 𝑆 𝑏 ) ) |
| 91 |
90
|
notbid |
⊢ ( 𝑑 = 𝑢 → ( ¬ 𝑑 𝑆 𝑏 ↔ ¬ 𝑢 𝑆 𝑏 ) ) |
| 92 |
91
|
rspccv |
⊢ ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( 𝑢 ∈ ( 𝑠 “ { 𝑎 } ) → ¬ 𝑢 𝑆 𝑏 ) ) |
| 93 |
89 92
|
biimtrrid |
⊢ ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( 〈 𝑎 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) |
| 94 |
93
|
adantl |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 〈 𝑎 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) |
| 95 |
|
opeq1 |
⊢ ( 𝑡 = 𝑎 → 〈 𝑡 , 𝑢 〉 = 〈 𝑎 , 𝑢 〉 ) |
| 96 |
95
|
eleq1d |
⊢ ( 𝑡 = 𝑎 → ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 ↔ 〈 𝑎 , 𝑢 〉 ∈ 𝑠 ) ) |
| 97 |
96
|
imbi1d |
⊢ ( 𝑡 = 𝑎 → ( ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ↔ ( 〈 𝑎 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
| 98 |
94 97
|
imbitrrid |
⊢ ( 𝑡 = 𝑎 → ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
| 99 |
98
|
com3l |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ( 𝑡 = 𝑎 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
| 100 |
|
eleq1 |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 𝑤 ∈ 𝑠 ↔ 〈 𝑡 , 𝑢 〉 ∈ 𝑠 ) ) |
| 101 |
|
vex |
⊢ 𝑡 ∈ V |
| 102 |
101 88
|
op1std |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 1st ‘ 𝑤 ) = 𝑡 ) |
| 103 |
102
|
eqeq1d |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 1st ‘ 𝑤 ) = 𝑎 ↔ 𝑡 = 𝑎 ) ) |
| 104 |
101 88
|
op2ndd |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( 2nd ‘ 𝑤 ) = 𝑢 ) |
| 105 |
104
|
breq1d |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ↔ 𝑢 𝑆 𝑏 ) ) |
| 106 |
105
|
notbid |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ↔ ¬ 𝑢 𝑆 𝑏 ) ) |
| 107 |
103 106
|
imbi12d |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( 𝑡 = 𝑎 → ¬ 𝑢 𝑆 𝑏 ) ) ) |
| 108 |
100 107
|
imbi12d |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( 〈 𝑡 , 𝑢 〉 ∈ 𝑠 → ( 𝑡 = 𝑎 → ¬ 𝑢 𝑆 𝑏 ) ) ) ) |
| 109 |
99 108
|
imbitrrid |
⊢ ( 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 110 |
109
|
exlimivv |
⊢ ( ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 111 |
110
|
com3l |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ∃ 𝑡 ∃ 𝑢 𝑤 = 〈 𝑡 , 𝑢 〉 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 112 |
87 111
|
mpdd |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 113 |
112
|
adantlr |
⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 114 |
84 113
|
jcad |
⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ( 𝑤 ∈ 𝑠 → ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 115 |
114
|
ralrimiv |
⊢ ( ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 ) → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 116 |
115
|
ex |
⊢ ( ( Rel 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 117 |
16 116
|
sylan |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 118 |
|
olc |
⊢ ( ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) → ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 119 |
118
|
ralimi |
⊢ ( ∀ 𝑤 ∈ 𝑠 ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 120 |
117 119
|
syl6 |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) ) |
| 121 |
|
ianor |
⊢ ( ¬ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 122 |
|
vex |
⊢ 𝑤 ∈ V |
| 123 |
|
opex |
⊢ 〈 𝑎 , 𝑏 〉 ∈ V |
| 124 |
|
eleq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↔ 𝑤 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 125 |
124
|
anbi1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ) ) |
| 126 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑤 ) ) |
| 127 |
126
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ) ) |
| 128 |
126
|
eqeq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ) ) |
| 129 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑤 ) ) |
| 130 |
129
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) |
| 131 |
128 130
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ↔ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) |
| 132 |
127 131
|
orbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ↔ ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ) |
| 133 |
125 132
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ) ) |
| 134 |
|
eleq1 |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝑦 ∈ ( 𝐴 × 𝐵 ) ↔ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 135 |
134
|
anbi2d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ) ) |
| 136 |
56 58
|
op1std |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 1st ‘ 𝑦 ) = 𝑎 ) |
| 137 |
136
|
breq2d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ) ) |
| 138 |
136
|
eqeq2d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ↔ ( 1st ‘ 𝑤 ) = 𝑎 ) ) |
| 139 |
56 58
|
op2ndd |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 2nd ‘ 𝑦 ) = 𝑏 ) |
| 140 |
139
|
breq2d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) |
| 141 |
138 140
|
anbi12d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ↔ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 142 |
137 141
|
orbi12d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ↔ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 143 |
135 142
|
anbi12d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑤 ) 𝑆 ( 2nd ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) ) |
| 144 |
122 123 133 143 1
|
brab |
⊢ ( 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 145 |
121 144
|
xchnxbir |
⊢ ( ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 146 |
|
ioran |
⊢ ( ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 147 |
|
ianor |
⊢ ( ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( ¬ ( 1st ‘ 𝑤 ) = 𝑎 ∨ ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) |
| 148 |
|
pm4.62 |
⊢ ( ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( ¬ ( 1st ‘ 𝑤 ) = 𝑎 ∨ ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) |
| 149 |
147 148
|
bitr4i |
⊢ ( ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ↔ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) |
| 150 |
149
|
anbi2i |
⊢ ( ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ¬ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 151 |
146 150
|
bitri |
⊢ ( ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ↔ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) |
| 152 |
151
|
orbi2i |
⊢ ( ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ¬ ( ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∨ ( ( 1st ‘ 𝑤 ) = 𝑎 ∧ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 153 |
145 152
|
bitri |
⊢ ( ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 154 |
153
|
ralbii |
⊢ ( ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ∀ 𝑤 ∈ 𝑠 ( ¬ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝐴 × 𝐵 ) ) ∨ ( ¬ ( 1st ‘ 𝑤 ) 𝑅 𝑎 ∧ ( ( 1st ‘ 𝑤 ) = 𝑎 → ¬ ( 2nd ‘ 𝑤 ) 𝑆 𝑏 ) ) ) ) |
| 155 |
120 154
|
imbitrrdi |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 156 |
155
|
reximdv |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 157 |
156
|
ex |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 158 |
157
|
com23 |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 159 |
158
|
adantr |
⊢ ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑎 ∈ dom 𝑠 ) → ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑏 → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 160 |
76 159
|
sylcom |
⊢ ( 𝑆 Fr 𝐵 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑎 ∈ dom 𝑠 ) → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 161 |
160
|
impl |
⊢ ( ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ) ∧ 𝑎 ∈ dom 𝑠 ) → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 162 |
161
|
expimpd |
⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ) → ( ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 163 |
162
|
3adant3 |
⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 164 |
|
resss |
⊢ ( 𝑠 ↾ { 𝑎 } ) ⊆ 𝑠 |
| 165 |
|
df-rex |
⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ↔ ∃ 𝑏 ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 166 |
|
eqid |
⊢ 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 |
| 167 |
|
eqeq1 |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( 𝑧 = 〈 𝑎 , 𝑏 〉 ↔ 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 ) ) |
| 168 |
|
breq2 |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( 𝑤 𝑇 𝑧 ↔ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 169 |
168
|
notbid |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ¬ 𝑤 𝑇 𝑧 ↔ ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 170 |
169
|
ralbidv |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ↔ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
| 171 |
170
|
anbi2d |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
| 172 |
167 171
|
anbi12d |
⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ↔ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) ) |
| 173 |
123 172
|
spcev |
⊢ ( ( 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) ) → ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 174 |
166 173
|
mpan |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 175 |
59 174
|
sylanb |
⊢ ( ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 176 |
175
|
eximi |
⊢ ( ∃ 𝑏 ( 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑏 ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 177 |
165 176
|
sylbi |
⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑏 ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 178 |
|
excom |
⊢ ( ∃ 𝑏 ∃ 𝑧 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ↔ ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 179 |
177 178
|
sylib |
⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 180 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 181 |
56
|
elsnres |
⊢ ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ↔ ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ) |
| 182 |
181
|
anbi1i |
⊢ ( ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 183 |
|
19.41v |
⊢ ( ∃ 𝑏 ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 184 |
|
anass |
⊢ ( ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 185 |
184
|
exbii |
⊢ ( ∃ 𝑏 ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 186 |
182 183 185
|
3bitr2i |
⊢ ( ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 187 |
186
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ↔ ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 188 |
180 187
|
bitri |
⊢ ( ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ↔ ∃ 𝑧 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑠 ∧ ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 189 |
179 188
|
sylibr |
⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) |
| 190 |
|
ssrexv |
⊢ ( ( 𝑠 ↾ { 𝑎 } ) ⊆ 𝑠 → ( ∃ 𝑧 ∈ ( 𝑠 ↾ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 191 |
164 189 190
|
mpsyl |
⊢ ( ∃ 𝑏 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 〈 𝑎 , 𝑏 〉 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) |
| 192 |
163 191
|
syl6 |
⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 193 |
192
|
expd |
⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( 𝑎 ∈ dom 𝑠 → ( ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 194 |
193
|
rexlimdv |
⊢ ( ( 𝑆 Fr 𝐵 ∧ 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 195 |
194
|
3expib |
⊢ ( 𝑆 Fr 𝐵 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 196 |
195
|
adantl |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ( ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑐 ∈ dom 𝑠 ¬ 𝑐 𝑅 𝑎 → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) ) |
| 197 |
34 196
|
mpdd |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 198 |
197
|
alrimiv |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → ∀ 𝑠 ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 199 |
|
df-fr |
⊢ ( 𝑇 Fr ( 𝐴 × 𝐵 ) ↔ ∀ 𝑠 ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑧 ∈ 𝑠 ∀ 𝑤 ∈ 𝑠 ¬ 𝑤 𝑇 𝑧 ) ) |
| 200 |
198 199
|
sylibr |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑆 Fr 𝐵 ) → 𝑇 Fr ( 𝐴 × 𝐵 ) ) |