| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frxp.1 |
|- T = { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } |
| 2 |
|
ssn0 |
|- ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> ( A X. B ) =/= (/) ) |
| 3 |
|
xpnz |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
| 4 |
3
|
biimpri |
|- ( ( A X. B ) =/= (/) -> ( A =/= (/) /\ B =/= (/) ) ) |
| 5 |
4
|
simprd |
|- ( ( A X. B ) =/= (/) -> B =/= (/) ) |
| 6 |
2 5
|
syl |
|- ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> B =/= (/) ) |
| 7 |
|
dmxp |
|- ( B =/= (/) -> dom ( A X. B ) = A ) |
| 8 |
|
dmss |
|- ( s C_ ( A X. B ) -> dom s C_ dom ( A X. B ) ) |
| 9 |
|
sseq2 |
|- ( dom ( A X. B ) = A -> ( dom s C_ dom ( A X. B ) <-> dom s C_ A ) ) |
| 10 |
8 9
|
imbitrid |
|- ( dom ( A X. B ) = A -> ( s C_ ( A X. B ) -> dom s C_ A ) ) |
| 11 |
7 10
|
syl |
|- ( B =/= (/) -> ( s C_ ( A X. B ) -> dom s C_ A ) ) |
| 12 |
11
|
impcom |
|- ( ( s C_ ( A X. B ) /\ B =/= (/) ) -> dom s C_ A ) |
| 13 |
6 12
|
syldan |
|- ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> dom s C_ A ) |
| 14 |
|
relxp |
|- Rel ( A X. B ) |
| 15 |
|
relss |
|- ( s C_ ( A X. B ) -> ( Rel ( A X. B ) -> Rel s ) ) |
| 16 |
14 15
|
mpi |
|- ( s C_ ( A X. B ) -> Rel s ) |
| 17 |
|
reldm0 |
|- ( Rel s -> ( s = (/) <-> dom s = (/) ) ) |
| 18 |
16 17
|
syl |
|- ( s C_ ( A X. B ) -> ( s = (/) <-> dom s = (/) ) ) |
| 19 |
18
|
necon3bid |
|- ( s C_ ( A X. B ) -> ( s =/= (/) <-> dom s =/= (/) ) ) |
| 20 |
19
|
biimpa |
|- ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> dom s =/= (/) ) |
| 21 |
13 20
|
jca |
|- ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> ( dom s C_ A /\ dom s =/= (/) ) ) |
| 22 |
|
df-fr |
|- ( R Fr A <-> A. v ( ( v C_ A /\ v =/= (/) ) -> E. a e. v A. c e. v -. c R a ) ) |
| 23 |
|
vex |
|- s e. _V |
| 24 |
23
|
dmex |
|- dom s e. _V |
| 25 |
|
sseq1 |
|- ( v = dom s -> ( v C_ A <-> dom s C_ A ) ) |
| 26 |
|
neeq1 |
|- ( v = dom s -> ( v =/= (/) <-> dom s =/= (/) ) ) |
| 27 |
25 26
|
anbi12d |
|- ( v = dom s -> ( ( v C_ A /\ v =/= (/) ) <-> ( dom s C_ A /\ dom s =/= (/) ) ) ) |
| 28 |
|
raleq |
|- ( v = dom s -> ( A. c e. v -. c R a <-> A. c e. dom s -. c R a ) ) |
| 29 |
28
|
rexeqbi1dv |
|- ( v = dom s -> ( E. a e. v A. c e. v -. c R a <-> E. a e. dom s A. c e. dom s -. c R a ) ) |
| 30 |
27 29
|
imbi12d |
|- ( v = dom s -> ( ( ( v C_ A /\ v =/= (/) ) -> E. a e. v A. c e. v -. c R a ) <-> ( ( dom s C_ A /\ dom s =/= (/) ) -> E. a e. dom s A. c e. dom s -. c R a ) ) ) |
| 31 |
24 30
|
spcv |
|- ( A. v ( ( v C_ A /\ v =/= (/) ) -> E. a e. v A. c e. v -. c R a ) -> ( ( dom s C_ A /\ dom s =/= (/) ) -> E. a e. dom s A. c e. dom s -. c R a ) ) |
| 32 |
22 31
|
sylbi |
|- ( R Fr A -> ( ( dom s C_ A /\ dom s =/= (/) ) -> E. a e. dom s A. c e. dom s -. c R a ) ) |
| 33 |
21 32
|
syl5 |
|- ( R Fr A -> ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> E. a e. dom s A. c e. dom s -. c R a ) ) |
| 34 |
33
|
adantr |
|- ( ( R Fr A /\ S Fr B ) -> ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> E. a e. dom s A. c e. dom s -. c R a ) ) |
| 35 |
|
imassrn |
|- ( s " { a } ) C_ ran s |
| 36 |
|
xpeq0 |
|- ( ( A X. B ) = (/) <-> ( A = (/) \/ B = (/) ) ) |
| 37 |
36
|
biimpri |
|- ( ( A = (/) \/ B = (/) ) -> ( A X. B ) = (/) ) |
| 38 |
37
|
orcs |
|- ( A = (/) -> ( A X. B ) = (/) ) |
| 39 |
|
sseq2 |
|- ( ( A X. B ) = (/) -> ( s C_ ( A X. B ) <-> s C_ (/) ) ) |
| 40 |
|
ss0 |
|- ( s C_ (/) -> s = (/) ) |
| 41 |
39 40
|
biimtrdi |
|- ( ( A X. B ) = (/) -> ( s C_ ( A X. B ) -> s = (/) ) ) |
| 42 |
38 41
|
syl |
|- ( A = (/) -> ( s C_ ( A X. B ) -> s = (/) ) ) |
| 43 |
|
rneq |
|- ( s = (/) -> ran s = ran (/) ) |
| 44 |
|
rn0 |
|- ran (/) = (/) |
| 45 |
|
0ss |
|- (/) C_ B |
| 46 |
44 45
|
eqsstri |
|- ran (/) C_ B |
| 47 |
43 46
|
eqsstrdi |
|- ( s = (/) -> ran s C_ B ) |
| 48 |
42 47
|
syl6 |
|- ( A = (/) -> ( s C_ ( A X. B ) -> ran s C_ B ) ) |
| 49 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. B ) = B ) |
| 50 |
|
rnss |
|- ( s C_ ( A X. B ) -> ran s C_ ran ( A X. B ) ) |
| 51 |
|
sseq2 |
|- ( ran ( A X. B ) = B -> ( ran s C_ ran ( A X. B ) <-> ran s C_ B ) ) |
| 52 |
50 51
|
imbitrid |
|- ( ran ( A X. B ) = B -> ( s C_ ( A X. B ) -> ran s C_ B ) ) |
| 53 |
49 52
|
syl |
|- ( A =/= (/) -> ( s C_ ( A X. B ) -> ran s C_ B ) ) |
| 54 |
48 53
|
pm2.61ine |
|- ( s C_ ( A X. B ) -> ran s C_ B ) |
| 55 |
35 54
|
sstrid |
|- ( s C_ ( A X. B ) -> ( s " { a } ) C_ B ) |
| 56 |
|
vex |
|- a e. _V |
| 57 |
56
|
eldm |
|- ( a e. dom s <-> E. b a s b ) |
| 58 |
|
vex |
|- b e. _V |
| 59 |
56 58
|
elimasn |
|- ( b e. ( s " { a } ) <-> <. a , b >. e. s ) |
| 60 |
|
df-br |
|- ( a s b <-> <. a , b >. e. s ) |
| 61 |
59 60
|
bitr4i |
|- ( b e. ( s " { a } ) <-> a s b ) |
| 62 |
|
ne0i |
|- ( b e. ( s " { a } ) -> ( s " { a } ) =/= (/) ) |
| 63 |
61 62
|
sylbir |
|- ( a s b -> ( s " { a } ) =/= (/) ) |
| 64 |
63
|
exlimiv |
|- ( E. b a s b -> ( s " { a } ) =/= (/) ) |
| 65 |
57 64
|
sylbi |
|- ( a e. dom s -> ( s " { a } ) =/= (/) ) |
| 66 |
|
df-fr |
|- ( S Fr B <-> A. v ( ( v C_ B /\ v =/= (/) ) -> E. b e. v A. d e. v -. d S b ) ) |
| 67 |
23
|
imaex |
|- ( s " { a } ) e. _V |
| 68 |
|
sseq1 |
|- ( v = ( s " { a } ) -> ( v C_ B <-> ( s " { a } ) C_ B ) ) |
| 69 |
|
neeq1 |
|- ( v = ( s " { a } ) -> ( v =/= (/) <-> ( s " { a } ) =/= (/) ) ) |
| 70 |
68 69
|
anbi12d |
|- ( v = ( s " { a } ) -> ( ( v C_ B /\ v =/= (/) ) <-> ( ( s " { a } ) C_ B /\ ( s " { a } ) =/= (/) ) ) ) |
| 71 |
|
raleq |
|- ( v = ( s " { a } ) -> ( A. d e. v -. d S b <-> A. d e. ( s " { a } ) -. d S b ) ) |
| 72 |
71
|
rexeqbi1dv |
|- ( v = ( s " { a } ) -> ( E. b e. v A. d e. v -. d S b <-> E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b ) ) |
| 73 |
70 72
|
imbi12d |
|- ( v = ( s " { a } ) -> ( ( ( v C_ B /\ v =/= (/) ) -> E. b e. v A. d e. v -. d S b ) <-> ( ( ( s " { a } ) C_ B /\ ( s " { a } ) =/= (/) ) -> E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b ) ) ) |
| 74 |
67 73
|
spcv |
|- ( A. v ( ( v C_ B /\ v =/= (/) ) -> E. b e. v A. d e. v -. d S b ) -> ( ( ( s " { a } ) C_ B /\ ( s " { a } ) =/= (/) ) -> E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b ) ) |
| 75 |
66 74
|
sylbi |
|- ( S Fr B -> ( ( ( s " { a } ) C_ B /\ ( s " { a } ) =/= (/) ) -> E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b ) ) |
| 76 |
55 65 75
|
syl2ani |
|- ( S Fr B -> ( ( s C_ ( A X. B ) /\ a e. dom s ) -> E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b ) ) |
| 77 |
|
1stdm |
|- ( ( Rel s /\ w e. s ) -> ( 1st ` w ) e. dom s ) |
| 78 |
|
breq1 |
|- ( c = ( 1st ` w ) -> ( c R a <-> ( 1st ` w ) R a ) ) |
| 79 |
78
|
notbid |
|- ( c = ( 1st ` w ) -> ( -. c R a <-> -. ( 1st ` w ) R a ) ) |
| 80 |
79
|
rspccv |
|- ( A. c e. dom s -. c R a -> ( ( 1st ` w ) e. dom s -> -. ( 1st ` w ) R a ) ) |
| 81 |
77 80
|
syl5 |
|- ( A. c e. dom s -. c R a -> ( ( Rel s /\ w e. s ) -> -. ( 1st ` w ) R a ) ) |
| 82 |
81
|
expd |
|- ( A. c e. dom s -. c R a -> ( Rel s -> ( w e. s -> -. ( 1st ` w ) R a ) ) ) |
| 83 |
82
|
impcom |
|- ( ( Rel s /\ A. c e. dom s -. c R a ) -> ( w e. s -> -. ( 1st ` w ) R a ) ) |
| 84 |
83
|
adantr |
|- ( ( ( Rel s /\ A. c e. dom s -. c R a ) /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> -. ( 1st ` w ) R a ) ) |
| 85 |
|
elrel |
|- ( ( Rel s /\ w e. s ) -> E. t E. u w = <. t , u >. ) |
| 86 |
85
|
ex |
|- ( Rel s -> ( w e. s -> E. t E. u w = <. t , u >. ) ) |
| 87 |
86
|
adantr |
|- ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> E. t E. u w = <. t , u >. ) ) |
| 88 |
|
vex |
|- u e. _V |
| 89 |
56 88
|
elimasn |
|- ( u e. ( s " { a } ) <-> <. a , u >. e. s ) |
| 90 |
|
breq1 |
|- ( d = u -> ( d S b <-> u S b ) ) |
| 91 |
90
|
notbid |
|- ( d = u -> ( -. d S b <-> -. u S b ) ) |
| 92 |
91
|
rspccv |
|- ( A. d e. ( s " { a } ) -. d S b -> ( u e. ( s " { a } ) -> -. u S b ) ) |
| 93 |
89 92
|
biimtrrid |
|- ( A. d e. ( s " { a } ) -. d S b -> ( <. a , u >. e. s -> -. u S b ) ) |
| 94 |
93
|
adantl |
|- ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( <. a , u >. e. s -> -. u S b ) ) |
| 95 |
|
opeq1 |
|- ( t = a -> <. t , u >. = <. a , u >. ) |
| 96 |
95
|
eleq1d |
|- ( t = a -> ( <. t , u >. e. s <-> <. a , u >. e. s ) ) |
| 97 |
96
|
imbi1d |
|- ( t = a -> ( ( <. t , u >. e. s -> -. u S b ) <-> ( <. a , u >. e. s -> -. u S b ) ) ) |
| 98 |
94 97
|
imbitrrid |
|- ( t = a -> ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( <. t , u >. e. s -> -. u S b ) ) ) |
| 99 |
98
|
com3l |
|- ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( <. t , u >. e. s -> ( t = a -> -. u S b ) ) ) |
| 100 |
|
eleq1 |
|- ( w = <. t , u >. -> ( w e. s <-> <. t , u >. e. s ) ) |
| 101 |
|
vex |
|- t e. _V |
| 102 |
101 88
|
op1std |
|- ( w = <. t , u >. -> ( 1st ` w ) = t ) |
| 103 |
102
|
eqeq1d |
|- ( w = <. t , u >. -> ( ( 1st ` w ) = a <-> t = a ) ) |
| 104 |
101 88
|
op2ndd |
|- ( w = <. t , u >. -> ( 2nd ` w ) = u ) |
| 105 |
104
|
breq1d |
|- ( w = <. t , u >. -> ( ( 2nd ` w ) S b <-> u S b ) ) |
| 106 |
105
|
notbid |
|- ( w = <. t , u >. -> ( -. ( 2nd ` w ) S b <-> -. u S b ) ) |
| 107 |
103 106
|
imbi12d |
|- ( w = <. t , u >. -> ( ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) <-> ( t = a -> -. u S b ) ) ) |
| 108 |
100 107
|
imbi12d |
|- ( w = <. t , u >. -> ( ( w e. s -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) <-> ( <. t , u >. e. s -> ( t = a -> -. u S b ) ) ) ) |
| 109 |
99 108
|
imbitrrid |
|- ( w = <. t , u >. -> ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 110 |
109
|
exlimivv |
|- ( E. t E. u w = <. t , u >. -> ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 111 |
110
|
com3l |
|- ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( E. t E. u w = <. t , u >. -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 112 |
87 111
|
mpdd |
|- ( ( Rel s /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) |
| 113 |
112
|
adantlr |
|- ( ( ( Rel s /\ A. c e. dom s -. c R a ) /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) |
| 114 |
84 113
|
jcad |
|- ( ( ( Rel s /\ A. c e. dom s -. c R a ) /\ A. d e. ( s " { a } ) -. d S b ) -> ( w e. s -> ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 115 |
114
|
ralrimiv |
|- ( ( ( Rel s /\ A. c e. dom s -. c R a ) /\ A. d e. ( s " { a } ) -. d S b ) -> A. w e. s ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) |
| 116 |
115
|
ex |
|- ( ( Rel s /\ A. c e. dom s -. c R a ) -> ( A. d e. ( s " { a } ) -. d S b -> A. w e. s ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 117 |
16 116
|
sylan |
|- ( ( s C_ ( A X. B ) /\ A. c e. dom s -. c R a ) -> ( A. d e. ( s " { a } ) -. d S b -> A. w e. s ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 118 |
|
olc |
|- ( ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) -> ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 119 |
118
|
ralimi |
|- ( A. w e. s ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) -> A. w e. s ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 120 |
117 119
|
syl6 |
|- ( ( s C_ ( A X. B ) /\ A. c e. dom s -. c R a ) -> ( A. d e. ( s " { a } ) -. d S b -> A. w e. s ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) ) |
| 121 |
|
ianor |
|- ( -. ( ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) /\ ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) <-> ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ -. ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) ) |
| 122 |
|
vex |
|- w e. _V |
| 123 |
|
opex |
|- <. a , b >. e. _V |
| 124 |
|
eleq1 |
|- ( x = w -> ( x e. ( A X. B ) <-> w e. ( A X. B ) ) ) |
| 125 |
124
|
anbi1d |
|- ( x = w -> ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) <-> ( w e. ( A X. B ) /\ y e. ( A X. B ) ) ) ) |
| 126 |
|
fveq2 |
|- ( x = w -> ( 1st ` x ) = ( 1st ` w ) ) |
| 127 |
126
|
breq1d |
|- ( x = w -> ( ( 1st ` x ) R ( 1st ` y ) <-> ( 1st ` w ) R ( 1st ` y ) ) ) |
| 128 |
126
|
eqeq1d |
|- ( x = w -> ( ( 1st ` x ) = ( 1st ` y ) <-> ( 1st ` w ) = ( 1st ` y ) ) ) |
| 129 |
|
fveq2 |
|- ( x = w -> ( 2nd ` x ) = ( 2nd ` w ) ) |
| 130 |
129
|
breq1d |
|- ( x = w -> ( ( 2nd ` x ) S ( 2nd ` y ) <-> ( 2nd ` w ) S ( 2nd ` y ) ) ) |
| 131 |
128 130
|
anbi12d |
|- ( x = w -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) <-> ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) ) ) |
| 132 |
127 131
|
orbi12d |
|- ( x = w -> ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) <-> ( ( 1st ` w ) R ( 1st ` y ) \/ ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) ) ) ) |
| 133 |
125 132
|
anbi12d |
|- ( x = w -> ( ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) <-> ( ( w e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` w ) R ( 1st ` y ) \/ ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) ) ) ) ) |
| 134 |
|
eleq1 |
|- ( y = <. a , b >. -> ( y e. ( A X. B ) <-> <. a , b >. e. ( A X. B ) ) ) |
| 135 |
134
|
anbi2d |
|- ( y = <. a , b >. -> ( ( w e. ( A X. B ) /\ y e. ( A X. B ) ) <-> ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) ) ) |
| 136 |
56 58
|
op1std |
|- ( y = <. a , b >. -> ( 1st ` y ) = a ) |
| 137 |
136
|
breq2d |
|- ( y = <. a , b >. -> ( ( 1st ` w ) R ( 1st ` y ) <-> ( 1st ` w ) R a ) ) |
| 138 |
136
|
eqeq2d |
|- ( y = <. a , b >. -> ( ( 1st ` w ) = ( 1st ` y ) <-> ( 1st ` w ) = a ) ) |
| 139 |
56 58
|
op2ndd |
|- ( y = <. a , b >. -> ( 2nd ` y ) = b ) |
| 140 |
139
|
breq2d |
|- ( y = <. a , b >. -> ( ( 2nd ` w ) S ( 2nd ` y ) <-> ( 2nd ` w ) S b ) ) |
| 141 |
138 140
|
anbi12d |
|- ( y = <. a , b >. -> ( ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) <-> ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) |
| 142 |
137 141
|
orbi12d |
|- ( y = <. a , b >. -> ( ( ( 1st ` w ) R ( 1st ` y ) \/ ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) ) <-> ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) ) |
| 143 |
135 142
|
anbi12d |
|- ( y = <. a , b >. -> ( ( ( w e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` w ) R ( 1st ` y ) \/ ( ( 1st ` w ) = ( 1st ` y ) /\ ( 2nd ` w ) S ( 2nd ` y ) ) ) ) <-> ( ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) /\ ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) ) ) |
| 144 |
122 123 133 143 1
|
brab |
|- ( w T <. a , b >. <-> ( ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) /\ ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) ) |
| 145 |
121 144
|
xchnxbir |
|- ( -. w T <. a , b >. <-> ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ -. ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) ) |
| 146 |
|
ioran |
|- ( -. ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) <-> ( -. ( 1st ` w ) R a /\ -. ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) |
| 147 |
|
ianor |
|- ( -. ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) <-> ( -. ( 1st ` w ) = a \/ -. ( 2nd ` w ) S b ) ) |
| 148 |
|
pm4.62 |
|- ( ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) <-> ( -. ( 1st ` w ) = a \/ -. ( 2nd ` w ) S b ) ) |
| 149 |
147 148
|
bitr4i |
|- ( -. ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) <-> ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) |
| 150 |
149
|
anbi2i |
|- ( ( -. ( 1st ` w ) R a /\ -. ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) <-> ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) |
| 151 |
146 150
|
bitri |
|- ( -. ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) <-> ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) |
| 152 |
151
|
orbi2i |
|- ( ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ -. ( ( 1st ` w ) R a \/ ( ( 1st ` w ) = a /\ ( 2nd ` w ) S b ) ) ) <-> ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 153 |
145 152
|
bitri |
|- ( -. w T <. a , b >. <-> ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 154 |
153
|
ralbii |
|- ( A. w e. s -. w T <. a , b >. <-> A. w e. s ( -. ( w e. ( A X. B ) /\ <. a , b >. e. ( A X. B ) ) \/ ( -. ( 1st ` w ) R a /\ ( ( 1st ` w ) = a -> -. ( 2nd ` w ) S b ) ) ) ) |
| 155 |
120 154
|
imbitrrdi |
|- ( ( s C_ ( A X. B ) /\ A. c e. dom s -. c R a ) -> ( A. d e. ( s " { a } ) -. d S b -> A. w e. s -. w T <. a , b >. ) ) |
| 156 |
155
|
reximdv |
|- ( ( s C_ ( A X. B ) /\ A. c e. dom s -. c R a ) -> ( E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) |
| 157 |
156
|
ex |
|- ( s C_ ( A X. B ) -> ( A. c e. dom s -. c R a -> ( E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) ) |
| 158 |
157
|
com23 |
|- ( s C_ ( A X. B ) -> ( E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b -> ( A. c e. dom s -. c R a -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) ) |
| 159 |
158
|
adantr |
|- ( ( s C_ ( A X. B ) /\ a e. dom s ) -> ( E. b e. ( s " { a } ) A. d e. ( s " { a } ) -. d S b -> ( A. c e. dom s -. c R a -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) ) |
| 160 |
76 159
|
sylcom |
|- ( S Fr B -> ( ( s C_ ( A X. B ) /\ a e. dom s ) -> ( A. c e. dom s -. c R a -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) ) |
| 161 |
160
|
impl |
|- ( ( ( S Fr B /\ s C_ ( A X. B ) ) /\ a e. dom s ) -> ( A. c e. dom s -. c R a -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) |
| 162 |
161
|
expimpd |
|- ( ( S Fr B /\ s C_ ( A X. B ) ) -> ( ( a e. dom s /\ A. c e. dom s -. c R a ) -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) |
| 163 |
162
|
3adant3 |
|- ( ( S Fr B /\ s C_ ( A X. B ) /\ s =/= (/) ) -> ( ( a e. dom s /\ A. c e. dom s -. c R a ) -> E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. ) ) |
| 164 |
|
resss |
|- ( s |` { a } ) C_ s |
| 165 |
|
df-rex |
|- ( E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. <-> E. b ( b e. ( s " { a } ) /\ A. w e. s -. w T <. a , b >. ) ) |
| 166 |
|
eqid |
|- <. a , b >. = <. a , b >. |
| 167 |
|
eqeq1 |
|- ( z = <. a , b >. -> ( z = <. a , b >. <-> <. a , b >. = <. a , b >. ) ) |
| 168 |
|
breq2 |
|- ( z = <. a , b >. -> ( w T z <-> w T <. a , b >. ) ) |
| 169 |
168
|
notbid |
|- ( z = <. a , b >. -> ( -. w T z <-> -. w T <. a , b >. ) ) |
| 170 |
169
|
ralbidv |
|- ( z = <. a , b >. -> ( A. w e. s -. w T z <-> A. w e. s -. w T <. a , b >. ) ) |
| 171 |
170
|
anbi2d |
|- ( z = <. a , b >. -> ( ( <. a , b >. e. s /\ A. w e. s -. w T z ) <-> ( <. a , b >. e. s /\ A. w e. s -. w T <. a , b >. ) ) ) |
| 172 |
167 171
|
anbi12d |
|- ( z = <. a , b >. -> ( ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) <-> ( <. a , b >. = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T <. a , b >. ) ) ) ) |
| 173 |
123 172
|
spcev |
|- ( ( <. a , b >. = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T <. a , b >. ) ) -> E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 174 |
166 173
|
mpan |
|- ( ( <. a , b >. e. s /\ A. w e. s -. w T <. a , b >. ) -> E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 175 |
59 174
|
sylanb |
|- ( ( b e. ( s " { a } ) /\ A. w e. s -. w T <. a , b >. ) -> E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 176 |
175
|
eximi |
|- ( E. b ( b e. ( s " { a } ) /\ A. w e. s -. w T <. a , b >. ) -> E. b E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 177 |
165 176
|
sylbi |
|- ( E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. -> E. b E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 178 |
|
excom |
|- ( E. b E. z ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) <-> E. z E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 179 |
177 178
|
sylib |
|- ( E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. -> E. z E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 180 |
|
df-rex |
|- ( E. z e. ( s |` { a } ) A. w e. s -. w T z <-> E. z ( z e. ( s |` { a } ) /\ A. w e. s -. w T z ) ) |
| 181 |
56
|
elsnres |
|- ( z e. ( s |` { a } ) <-> E. b ( z = <. a , b >. /\ <. a , b >. e. s ) ) |
| 182 |
181
|
anbi1i |
|- ( ( z e. ( s |` { a } ) /\ A. w e. s -. w T z ) <-> ( E. b ( z = <. a , b >. /\ <. a , b >. e. s ) /\ A. w e. s -. w T z ) ) |
| 183 |
|
19.41v |
|- ( E. b ( ( z = <. a , b >. /\ <. a , b >. e. s ) /\ A. w e. s -. w T z ) <-> ( E. b ( z = <. a , b >. /\ <. a , b >. e. s ) /\ A. w e. s -. w T z ) ) |
| 184 |
|
anass |
|- ( ( ( z = <. a , b >. /\ <. a , b >. e. s ) /\ A. w e. s -. w T z ) <-> ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 185 |
184
|
exbii |
|- ( E. b ( ( z = <. a , b >. /\ <. a , b >. e. s ) /\ A. w e. s -. w T z ) <-> E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 186 |
182 183 185
|
3bitr2i |
|- ( ( z e. ( s |` { a } ) /\ A. w e. s -. w T z ) <-> E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 187 |
186
|
exbii |
|- ( E. z ( z e. ( s |` { a } ) /\ A. w e. s -. w T z ) <-> E. z E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 188 |
180 187
|
bitri |
|- ( E. z e. ( s |` { a } ) A. w e. s -. w T z <-> E. z E. b ( z = <. a , b >. /\ ( <. a , b >. e. s /\ A. w e. s -. w T z ) ) ) |
| 189 |
179 188
|
sylibr |
|- ( E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. -> E. z e. ( s |` { a } ) A. w e. s -. w T z ) |
| 190 |
|
ssrexv |
|- ( ( s |` { a } ) C_ s -> ( E. z e. ( s |` { a } ) A. w e. s -. w T z -> E. z e. s A. w e. s -. w T z ) ) |
| 191 |
164 189 190
|
mpsyl |
|- ( E. b e. ( s " { a } ) A. w e. s -. w T <. a , b >. -> E. z e. s A. w e. s -. w T z ) |
| 192 |
163 191
|
syl6 |
|- ( ( S Fr B /\ s C_ ( A X. B ) /\ s =/= (/) ) -> ( ( a e. dom s /\ A. c e. dom s -. c R a ) -> E. z e. s A. w e. s -. w T z ) ) |
| 193 |
192
|
expd |
|- ( ( S Fr B /\ s C_ ( A X. B ) /\ s =/= (/) ) -> ( a e. dom s -> ( A. c e. dom s -. c R a -> E. z e. s A. w e. s -. w T z ) ) ) |
| 194 |
193
|
rexlimdv |
|- ( ( S Fr B /\ s C_ ( A X. B ) /\ s =/= (/) ) -> ( E. a e. dom s A. c e. dom s -. c R a -> E. z e. s A. w e. s -. w T z ) ) |
| 195 |
194
|
3expib |
|- ( S Fr B -> ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> ( E. a e. dom s A. c e. dom s -. c R a -> E. z e. s A. w e. s -. w T z ) ) ) |
| 196 |
195
|
adantl |
|- ( ( R Fr A /\ S Fr B ) -> ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> ( E. a e. dom s A. c e. dom s -. c R a -> E. z e. s A. w e. s -. w T z ) ) ) |
| 197 |
34 196
|
mpdd |
|- ( ( R Fr A /\ S Fr B ) -> ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> E. z e. s A. w e. s -. w T z ) ) |
| 198 |
197
|
alrimiv |
|- ( ( R Fr A /\ S Fr B ) -> A. s ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> E. z e. s A. w e. s -. w T z ) ) |
| 199 |
|
df-fr |
|- ( T Fr ( A X. B ) <-> A. s ( ( s C_ ( A X. B ) /\ s =/= (/) ) -> E. z e. s A. w e. s -. w T z ) ) |
| 200 |
198 199
|
sylibr |
|- ( ( R Fr A /\ S Fr B ) -> T Fr ( A X. B ) ) |