| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xporderlem.1 |
|- T = { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } |
| 2 |
|
df-br |
|- ( <. a , b >. T <. c , d >. <-> <. <. a , b >. , <. c , d >. >. e. T ) |
| 3 |
1
|
eleq2i |
|- ( <. <. a , b >. , <. c , d >. >. e. T <-> <. <. a , b >. , <. c , d >. >. e. { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } ) |
| 4 |
2 3
|
bitri |
|- ( <. a , b >. T <. c , d >. <-> <. <. a , b >. , <. c , d >. >. e. { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } ) |
| 5 |
|
opex |
|- <. a , b >. e. _V |
| 6 |
|
opex |
|- <. c , d >. e. _V |
| 7 |
|
eleq1 |
|- ( x = <. a , b >. -> ( x e. ( A X. B ) <-> <. a , b >. e. ( A X. B ) ) ) |
| 8 |
|
opelxp |
|- ( <. a , b >. e. ( A X. B ) <-> ( a e. A /\ b e. B ) ) |
| 9 |
7 8
|
bitrdi |
|- ( x = <. a , b >. -> ( x e. ( A X. B ) <-> ( a e. A /\ b e. B ) ) ) |
| 10 |
9
|
anbi1d |
|- ( x = <. a , b >. -> ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) <-> ( ( a e. A /\ b e. B ) /\ y e. ( A X. B ) ) ) ) |
| 11 |
|
vex |
|- a e. _V |
| 12 |
|
vex |
|- b e. _V |
| 13 |
11 12
|
op1std |
|- ( x = <. a , b >. -> ( 1st ` x ) = a ) |
| 14 |
13
|
breq1d |
|- ( x = <. a , b >. -> ( ( 1st ` x ) R ( 1st ` y ) <-> a R ( 1st ` y ) ) ) |
| 15 |
13
|
eqeq1d |
|- ( x = <. a , b >. -> ( ( 1st ` x ) = ( 1st ` y ) <-> a = ( 1st ` y ) ) ) |
| 16 |
11 12
|
op2ndd |
|- ( x = <. a , b >. -> ( 2nd ` x ) = b ) |
| 17 |
16
|
breq1d |
|- ( x = <. a , b >. -> ( ( 2nd ` x ) S ( 2nd ` y ) <-> b S ( 2nd ` y ) ) ) |
| 18 |
15 17
|
anbi12d |
|- ( x = <. a , b >. -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) <-> ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) ) ) |
| 19 |
14 18
|
orbi12d |
|- ( x = <. a , b >. -> ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) <-> ( a R ( 1st ` y ) \/ ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) ) ) ) |
| 20 |
10 19
|
anbi12d |
|- ( x = <. a , b >. -> ( ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) <-> ( ( ( a e. A /\ b e. B ) /\ y e. ( A X. B ) ) /\ ( a R ( 1st ` y ) \/ ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) ) ) ) ) |
| 21 |
|
eleq1 |
|- ( y = <. c , d >. -> ( y e. ( A X. B ) <-> <. c , d >. e. ( A X. B ) ) ) |
| 22 |
|
opelxp |
|- ( <. c , d >. e. ( A X. B ) <-> ( c e. A /\ d e. B ) ) |
| 23 |
21 22
|
bitrdi |
|- ( y = <. c , d >. -> ( y e. ( A X. B ) <-> ( c e. A /\ d e. B ) ) ) |
| 24 |
23
|
anbi2d |
|- ( y = <. c , d >. -> ( ( ( a e. A /\ b e. B ) /\ y e. ( A X. B ) ) <-> ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) ) ) |
| 25 |
|
vex |
|- c e. _V |
| 26 |
|
vex |
|- d e. _V |
| 27 |
25 26
|
op1std |
|- ( y = <. c , d >. -> ( 1st ` y ) = c ) |
| 28 |
27
|
breq2d |
|- ( y = <. c , d >. -> ( a R ( 1st ` y ) <-> a R c ) ) |
| 29 |
27
|
eqeq2d |
|- ( y = <. c , d >. -> ( a = ( 1st ` y ) <-> a = c ) ) |
| 30 |
25 26
|
op2ndd |
|- ( y = <. c , d >. -> ( 2nd ` y ) = d ) |
| 31 |
30
|
breq2d |
|- ( y = <. c , d >. -> ( b S ( 2nd ` y ) <-> b S d ) ) |
| 32 |
29 31
|
anbi12d |
|- ( y = <. c , d >. -> ( ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) <-> ( a = c /\ b S d ) ) ) |
| 33 |
28 32
|
orbi12d |
|- ( y = <. c , d >. -> ( ( a R ( 1st ` y ) \/ ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) ) <-> ( a R c \/ ( a = c /\ b S d ) ) ) ) |
| 34 |
24 33
|
anbi12d |
|- ( y = <. c , d >. -> ( ( ( ( a e. A /\ b e. B ) /\ y e. ( A X. B ) ) /\ ( a R ( 1st ` y ) \/ ( a = ( 1st ` y ) /\ b S ( 2nd ` y ) ) ) ) <-> ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) ) |
| 35 |
5 6 20 34
|
opelopab |
|- ( <. <. a , b >. , <. c , d >. >. e. { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } <-> ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) |
| 36 |
|
an4 |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) <-> ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) ) |
| 37 |
36
|
anbi1i |
|- ( ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) <-> ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) |
| 38 |
4 35 37
|
3bitri |
|- ( <. a , b >. T <. c , d >. <-> ( ( ( a e. A /\ c e. A ) /\ ( b e. B /\ d e. B ) ) /\ ( a R c \/ ( a = c /\ b S d ) ) ) ) |