Metamath Proof Explorer


Theorem wfr3OLD

Description: Obsolete form of wfr3 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfr3OLD.1 R We A
wfr3OLD.2 R Se A
wfr3OLD.3 F = wrecs R A G
Assertion wfr3OLD H Fn A z A H z = G H Pred R A z F = H

Proof

Step Hyp Ref Expression
1 wfr3OLD.1 R We A
2 wfr3OLD.2 R Se A
3 wfr3OLD.3 F = wrecs R A G
4 1 2 pm3.2i R We A R Se A
5 3 wfr1 R We A R Se A F Fn A
6 1 2 5 mp2an F Fn A
7 3 wfr2 R We A R Se A z A F z = G F Pred R A z
8 1 2 7 mpanl12 z A F z = G F Pred R A z
9 8 rgen z A F z = G F Pred R A z
10 6 9 pm3.2i F Fn A z A F z = G F Pred R A z
11 wfr3g R We A R Se A F Fn A z A F z = G F Pred R A z H Fn A z A H z = G H Pred R A z F = H
12 4 10 11 mp3an12 H Fn A z A H z = G H Pred R A z F = H