Metamath Proof Explorer


Theorem wfr3OLD

Description: Obsolete form of wfr3 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfr3OLD.1
|- R We A
wfr3OLD.2
|- R Se A
wfr3OLD.3
|- F = wrecs ( R , A , G )
Assertion wfr3OLD
|- ( ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) -> F = H )

Proof

Step Hyp Ref Expression
1 wfr3OLD.1
 |-  R We A
2 wfr3OLD.2
 |-  R Se A
3 wfr3OLD.3
 |-  F = wrecs ( R , A , G )
4 1 2 pm3.2i
 |-  ( R We A /\ R Se A )
5 3 wfr1
 |-  ( ( R We A /\ R Se A ) -> F Fn A )
6 1 2 5 mp2an
 |-  F Fn A
7 3 wfr2
 |-  ( ( ( R We A /\ R Se A ) /\ z e. A ) -> ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) )
8 1 2 7 mpanl12
 |-  ( z e. A -> ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) )
9 8 rgen
 |-  A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) )
10 6 9 pm3.2i
 |-  ( F Fn A /\ A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) )
11 wfr3g
 |-  ( ( ( R We A /\ R Se A ) /\ ( F Fn A /\ A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> F = H )
12 4 10 11 mp3an12
 |-  ( ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) -> F = H )