Step |
Hyp |
Ref |
Expression |
1 |
|
wfr3OLD.1 |
⊢ 𝑅 We 𝐴 |
2 |
|
wfr3OLD.2 |
⊢ 𝑅 Se 𝐴 |
3 |
|
wfr3OLD.3 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
4 |
1 2
|
pm3.2i |
⊢ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) |
5 |
3
|
wfr1 |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 Fn 𝐴 ) |
6 |
1 2 5
|
mp2an |
⊢ 𝐹 Fn 𝐴 |
7 |
3
|
wfr2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
8 |
1 2 7
|
mpanl12 |
⊢ ( 𝑧 ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
9 |
8
|
rgen |
⊢ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
10 |
6 9
|
pm3.2i |
⊢ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
11 |
|
wfr3g |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐻 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝐹 = 𝐻 ) |
12 |
4 10 11
|
mp3an12 |
⊢ ( ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝐻 ‘ 𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → 𝐹 = 𝐻 ) |