Metamath Proof Explorer


Theorem wfr3OLD

Description: Obsolete form of wfr3 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfr3OLD.1 𝑅 We 𝐴
wfr3OLD.2 𝑅 Se 𝐴
wfr3OLD.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
Assertion wfr3OLD ( ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐻𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → 𝐹 = 𝐻 )

Proof

Step Hyp Ref Expression
1 wfr3OLD.1 𝑅 We 𝐴
2 wfr3OLD.2 𝑅 Se 𝐴
3 wfr3OLD.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
4 1 2 pm3.2i ( 𝑅 We 𝐴𝑅 Se 𝐴 )
5 3 wfr1 ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝐹 Fn 𝐴 )
6 1 2 5 mp2an 𝐹 Fn 𝐴
7 3 wfr2 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ 𝑧𝐴 ) → ( 𝐹𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
8 1 2 7 mpanl12 ( 𝑧𝐴 → ( 𝐹𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
9 8 rgen 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) )
10 6 9 pm3.2i ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) )
11 wfr3g ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐹𝑧 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ∧ ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐻𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝐹 = 𝐻 )
12 4 10 11 mp3an12 ( ( 𝐻 Fn 𝐴 ∧ ∀ 𝑧𝐴 ( 𝐻𝑧 ) = ( 𝐺 ‘ ( 𝐻 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → 𝐹 = 𝐻 )