Metamath Proof Explorer


Theorem wfrrelOLD

Description: Obsolete proof of wfrrel as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 8-Jun-2018)

Ref Expression
Hypothesis wfrlem6OLD.1 F = wrecs R A G
Assertion wfrrelOLD Rel F

Proof

Step Hyp Ref Expression
1 wfrlem6OLD.1 F = wrecs R A G
2 reluni Rel f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y Rel g
3 eqid f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y = f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y
4 3 wfrlem2OLD g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y Fun g
5 funrel Fun g Rel g
6 4 5 syl g f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y Rel g
7 2 6 mprgbir Rel f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y
8 dfwrecsOLD wrecs R A G = f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y
9 1 8 eqtri F = f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y
10 9 releqi Rel F Rel f | x f Fn x x A y x Pred R A y x y x f y = G f Pred R A y
11 7 10 mpbir Rel F