Metamath Proof Explorer


Theorem wfrrelOLD

Description: Obsolete proof of wfrrel as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 8-Jun-2018)

Ref Expression
Hypothesis wfrlem6OLD.1 F=wrecsRAG
Assertion wfrrelOLD RelF

Proof

Step Hyp Ref Expression
1 wfrlem6OLD.1 F=wrecsRAG
2 reluni Relf|xfFnxxAyxPredRAyxyxfy=GfPredRAygf|xfFnxxAyxPredRAyxyxfy=GfPredRAyRelg
3 eqid f|xfFnxxAyxPredRAyxyxfy=GfPredRAy=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
4 3 wfrlem2OLD gf|xfFnxxAyxPredRAyxyxfy=GfPredRAyFung
5 funrel FungRelg
6 4 5 syl gf|xfFnxxAyxPredRAyxyxfy=GfPredRAyRelg
7 2 6 mprgbir Relf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
8 dfwrecsOLD wrecsRAG=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
9 1 8 eqtri F=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
10 9 releqi RelFRelf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
11 7 10 mpbir RelF