Metamath Proof Explorer


Theorem wl-ax11-lem1

Description: A transitive law for variable identifying expressions. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem1 x x = y x x = z y y = z

Proof

Step Hyp Ref Expression
1 wl-aetr x x = y x x = z y y = z
2 wl-aetr y y = x y y = z x x = z
3 2 aecoms x x = y y y = z x x = z
4 1 3 impbid x x = y x x = z y y = z