Metamath Proof Explorer


Theorem wl-lem-moexsb

Description: The antecedent A. x ( ph -> x = z ) relates to E* x ph , but is better suited for usage in proofs. Note that no distinct variable restriction is placed on ph .

This theorem provides a basic working step in proving theorems about E* or E! . (Contributed by Wolf Lammen, 3-Oct-2019)

Ref Expression
Assertion wl-lem-moexsb xφx=zxφzxφ

Proof

Step Hyp Ref Expression
1 nfa1 xxφx=z
2 nfs1v xzxφ
3 sp xφx=zφx=z
4 ax12v2 x=zφxx=zφ
5 3 4 syli xφx=zφxx=zφ
6 sb6 zxφxx=zφ
7 5 6 syl6ibr xφx=zφzxφ
8 1 2 7 exlimd xφx=zxφzxφ
9 spsbe zxφxφ
10 8 9 impbid1 xφx=zxφzxφ