Metamath Proof Explorer


Theorem wl-nfimf1

Description: An antecedent is irrelevant to a not-free property, if it always holds. I used this variant of nfim in dvelimdf to simplify the proof. (Contributed by Wolf Lammen, 14-Oct-2018)

Ref Expression
Assertion wl-nfimf1 x φ x φ ψ x ψ

Proof

Step Hyp Ref Expression
1 nfa1 x x φ
2 pm5.5 φ φ ψ ψ
3 2 sps x φ φ ψ ψ
4 1 3 nfbidf x φ x φ ψ x ψ