Metamath Proof Explorer


Theorem wlk2v2elem2

Description: Lemma 2 for wlk2v2e : The values of I after F are edges between two vertices enumerated by P . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 9-Jan-2021)

Ref Expression
Hypotheses wlk2v2e.i I=⟨“XY”⟩
wlk2v2e.f F=⟨“00”⟩
wlk2v2e.x XV
wlk2v2e.y YV
wlk2v2e.p P=⟨“XYX”⟩
Assertion wlk2v2elem2 k0..^FIFk=PkPk+1

Proof

Step Hyp Ref Expression
1 wlk2v2e.i I=⟨“XY”⟩
2 wlk2v2e.f F=⟨“00”⟩
3 wlk2v2e.x XV
4 wlk2v2e.y YV
5 wlk2v2e.p P=⟨“XYX”⟩
6 2 fveq1i F0=⟨“00”⟩0
7 0z 0
8 s2fv0 0⟨“00”⟩0=0
9 7 8 ax-mp ⟨“00”⟩0=0
10 6 9 eqtri F0=0
11 10 fveq2i IF0=I0
12 1 fveq1i I0=⟨“XY”⟩0
13 prex XYV
14 s1fv XYV⟨“XY”⟩0=XY
15 13 14 ax-mp ⟨“XY”⟩0=XY
16 12 15 eqtri I0=XY
17 5 fveq1i P0=⟨“XYX”⟩0
18 s3fv0 XV⟨“XYX”⟩0=X
19 3 18 ax-mp ⟨“XYX”⟩0=X
20 17 19 eqtri P0=X
21 5 fveq1i P1=⟨“XYX”⟩1
22 s3fv1 YV⟨“XYX”⟩1=Y
23 4 22 ax-mp ⟨“XYX”⟩1=Y
24 21 23 eqtri P1=Y
25 20 24 preq12i P0P1=XY
26 25 eqcomi XY=P0P1
27 11 16 26 3eqtri IF0=P0P1
28 2 fveq1i F1=⟨“00”⟩1
29 s2fv1 0⟨“00”⟩1=0
30 7 29 ax-mp ⟨“00”⟩1=0
31 28 30 eqtri F1=0
32 31 fveq2i IF1=I0
33 prcom XY=YX
34 5 fveq1i P2=⟨“XYX”⟩2
35 s3fv2 XV⟨“XYX”⟩2=X
36 3 35 ax-mp ⟨“XYX”⟩2=X
37 34 36 eqtri P2=X
38 24 37 preq12i P1P2=YX
39 38 eqcomi YX=P1P2
40 33 39 eqtri XY=P1P2
41 32 16 40 3eqtri IF1=P1P2
42 2wlklem k01IFk=PkPk+1IF0=P0P1IF1=P1P2
43 27 41 42 mpbir2an k01IFk=PkPk+1
44 5 2 2wlkdlem2 0..^F=01
45 44 raleqi k0..^FIFk=PkPk+1k01IFk=PkPk+1
46 43 45 mpbir k0..^FIFk=PkPk+1