Metamath Proof Explorer


Theorem wlk2v2elem2

Description: Lemma 2 for wlk2v2e : The values of I after F are edges between two vertices enumerated by P . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 9-Jan-2021)

Ref Expression
Hypotheses wlk2v2e.i I = ⟨“ X Y ”⟩
wlk2v2e.f F = ⟨“ 0 0 ”⟩
wlk2v2e.x X V
wlk2v2e.y Y V
wlk2v2e.p P = ⟨“ XYX ”⟩
Assertion wlk2v2elem2 k 0 ..^ F I F k = P k P k + 1

Proof

Step Hyp Ref Expression
1 wlk2v2e.i I = ⟨“ X Y ”⟩
2 wlk2v2e.f F = ⟨“ 0 0 ”⟩
3 wlk2v2e.x X V
4 wlk2v2e.y Y V
5 wlk2v2e.p P = ⟨“ XYX ”⟩
6 2 fveq1i F 0 = ⟨“ 0 0 ”⟩ 0
7 0z 0
8 s2fv0 0 ⟨“ 0 0 ”⟩ 0 = 0
9 7 8 ax-mp ⟨“ 0 0 ”⟩ 0 = 0
10 6 9 eqtri F 0 = 0
11 10 fveq2i I F 0 = I 0
12 1 fveq1i I 0 = ⟨“ X Y ”⟩ 0
13 prex X Y V
14 s1fv X Y V ⟨“ X Y ”⟩ 0 = X Y
15 13 14 ax-mp ⟨“ X Y ”⟩ 0 = X Y
16 12 15 eqtri I 0 = X Y
17 5 fveq1i P 0 = ⟨“ XYX ”⟩ 0
18 s3fv0 X V ⟨“ XYX ”⟩ 0 = X
19 3 18 ax-mp ⟨“ XYX ”⟩ 0 = X
20 17 19 eqtri P 0 = X
21 5 fveq1i P 1 = ⟨“ XYX ”⟩ 1
22 s3fv1 Y V ⟨“ XYX ”⟩ 1 = Y
23 4 22 ax-mp ⟨“ XYX ”⟩ 1 = Y
24 21 23 eqtri P 1 = Y
25 20 24 preq12i P 0 P 1 = X Y
26 25 eqcomi X Y = P 0 P 1
27 11 16 26 3eqtri I F 0 = P 0 P 1
28 2 fveq1i F 1 = ⟨“ 0 0 ”⟩ 1
29 s2fv1 0 ⟨“ 0 0 ”⟩ 1 = 0
30 7 29 ax-mp ⟨“ 0 0 ”⟩ 1 = 0
31 28 30 eqtri F 1 = 0
32 31 fveq2i I F 1 = I 0
33 prcom X Y = Y X
34 5 fveq1i P 2 = ⟨“ XYX ”⟩ 2
35 s3fv2 X V ⟨“ XYX ”⟩ 2 = X
36 3 35 ax-mp ⟨“ XYX ”⟩ 2 = X
37 34 36 eqtri P 2 = X
38 24 37 preq12i P 1 P 2 = Y X
39 38 eqcomi Y X = P 1 P 2
40 33 39 eqtri X Y = P 1 P 2
41 32 16 40 3eqtri I F 1 = P 1 P 2
42 2wlklem k 0 1 I F k = P k P k + 1 I F 0 = P 0 P 1 I F 1 = P 1 P 2
43 27 41 42 mpbir2an k 0 1 I F k = P k P k + 1
44 5 2 2wlkdlem2 0 ..^ F = 0 1
45 44 raleqi k 0 ..^ F I F k = P k P k + 1 k 0 1 I F k = P k P k + 1
46 43 45 mpbir k 0 ..^ F I F k = P k P k + 1