Metamath Proof Explorer


Theorem wlkvtxedg

Description: The vertices of a walk are connected by edges. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 2-Jan-2021)

Ref Expression
Hypothesis wlkvtxedg.e E = Edg G
Assertion wlkvtxedg F Walks G P k 0 ..^ F e E P k P k + 1 e

Proof

Step Hyp Ref Expression
1 wlkvtxedg.e E = Edg G
2 eqid iEdg G = iEdg G
3 2 wlkvtxiedg F Walks G P k 0 ..^ F e ran iEdg G P k P k + 1 e
4 edgval Edg G = ran iEdg G
5 1 4 eqtr2i ran iEdg G = E
6 5 rexeqi e ran iEdg G P k P k + 1 e e E P k P k + 1 e
7 6 ralbii k 0 ..^ F e ran iEdg G P k P k + 1 e k 0 ..^ F e E P k P k + 1 e
8 3 7 sylib F Walks G P k 0 ..^ F e E P k P k + 1 e