Metamath Proof Explorer


Theorem wlkvtxedg

Description: The vertices of a walk are connected by edges. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 2-Jan-2021)

Ref Expression
Hypothesis wlkvtxedg.e E=EdgG
Assertion wlkvtxedg FWalksGPk0..^FeEPkPk+1e

Proof

Step Hyp Ref Expression
1 wlkvtxedg.e E=EdgG
2 eqid iEdgG=iEdgG
3 2 wlkvtxiedg FWalksGPk0..^FeraniEdgGPkPk+1e
4 edgval EdgG=raniEdgG
5 1 4 eqtr2i raniEdgG=E
6 5 rexeqi eraniEdgGPkPk+1eeEPkPk+1e
7 6 ralbii k0..^FeraniEdgGPkPk+1ek0..^FeEPkPk+1e
8 3 7 sylib FWalksGPk0..^FeEPkPk+1e