Metamath Proof Explorer


Theorem wofi

Description: A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion wofi ROrAAFinRWeA

Proof

Step Hyp Ref Expression
1 sopo ROrARPoA
2 frfi RPoAAFinRFrA
3 1 2 sylan ROrAAFinRFrA
4 simpl ROrAAFinROrA
5 df-we RWeARFrAROrA
6 3 4 5 sylanbrc ROrAAFinRWeA