Metamath Proof Explorer


Theorem wrdres

Description: Condition for the restriction of a word to be a word itself. (Contributed by Thierry Arnoux, 5-Oct-2018)

Ref Expression
Assertion wrdres WWordSN0WW0..^NWordS

Proof

Step Hyp Ref Expression
1 wrdf WWordSW:0..^WS
2 elfzuz3 N0WWN
3 fzoss2 WN0..^N0..^W
4 2 3 syl N0W0..^N0..^W
5 fssres W:0..^WS0..^N0..^WW0..^N:0..^NS
6 1 4 5 syl2an WWordSN0WW0..^N:0..^NS
7 iswrdi W0..^N:0..^NSW0..^NWordS
8 6 7 syl WWordSN0WW0..^NWordS