Metamath Proof Explorer


Theorem wuncid

Description: The weak universe closure of a set contains the set. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wuncid AVAwUniClA

Proof

Step Hyp Ref Expression
1 ssintub AuWUni|Au
2 wuncval AVwUniClA=uWUni|Au
3 1 2 sseqtrrid AVAwUniClA