Metamath Proof Explorer


Theorem wunccl

Description: The weak universe closure of a set is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wunccl AVwUniClAWUni

Proof

Step Hyp Ref Expression
1 wuncval AVwUniClA=uWUni|Au
2 ssrab2 uWUni|AuWUni
3 wunex AVuWUniAu
4 rabn0 uWUni|AuuWUniAu
5 3 4 sylibr AVuWUni|Au
6 intwun uWUni|AuWUniuWUni|AuuWUni|AuWUni
7 2 5 6 sylancr AVuWUni|AuWUni
8 1 7 eqeltrd AVwUniClAWUni