Step |
Hyp |
Ref |
Expression |
1 |
|
wuncval |
|- ( A e. V -> ( wUniCl ` A ) = |^| { u e. WUni | A C_ u } ) |
2 |
|
ssrab2 |
|- { u e. WUni | A C_ u } C_ WUni |
3 |
|
wunex |
|- ( A e. V -> E. u e. WUni A C_ u ) |
4 |
|
rabn0 |
|- ( { u e. WUni | A C_ u } =/= (/) <-> E. u e. WUni A C_ u ) |
5 |
3 4
|
sylibr |
|- ( A e. V -> { u e. WUni | A C_ u } =/= (/) ) |
6 |
|
intwun |
|- ( ( { u e. WUni | A C_ u } C_ WUni /\ { u e. WUni | A C_ u } =/= (/) ) -> |^| { u e. WUni | A C_ u } e. WUni ) |
7 |
2 5 6
|
sylancr |
|- ( A e. V -> |^| { u e. WUni | A C_ u } e. WUni ) |
8 |
1 7
|
eqeltrd |
|- ( A e. V -> ( wUniCl ` A ) e. WUni ) |