Description: The weak universe closure is a subset of any other weak universe containing the set. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wuncss | |- ( ( U e. WUni /\ A C_ U ) -> ( wUniCl ` A ) C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | |- ( ( A C_ U /\ U e. WUni ) -> A e. _V ) |
|
| 2 | 1 | ancoms | |- ( ( U e. WUni /\ A C_ U ) -> A e. _V ) |
| 3 | wuncval | |- ( A e. _V -> ( wUniCl ` A ) = |^| { u e. WUni | A C_ u } ) |
|
| 4 | 2 3 | syl | |- ( ( U e. WUni /\ A C_ U ) -> ( wUniCl ` A ) = |^| { u e. WUni | A C_ u } ) |
| 5 | sseq2 | |- ( u = U -> ( A C_ u <-> A C_ U ) ) |
|
| 6 | 5 | intminss | |- ( ( U e. WUni /\ A C_ U ) -> |^| { u e. WUni | A C_ u } C_ U ) |
| 7 | 4 6 | eqsstrd | |- ( ( U e. WUni /\ A C_ U ) -> ( wUniCl ` A ) C_ U ) |