Metamath Proof Explorer


Theorem wuncss

Description: The weak universe closure is a subset of any other weak universe containing the set. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wuncss UWUniAUwUniClAU

Proof

Step Hyp Ref Expression
1 ssexg AUUWUniAV
2 1 ancoms UWUniAUAV
3 wuncval AVwUniClA=uWUni|Au
4 2 3 syl UWUniAUwUniClA=uWUni|Au
5 sseq2 u=UAuAU
6 5 intminss UWUniAUuWUni|AuU
7 4 6 eqsstrd UWUniAUwUniClAU