| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wunccl |
|- ( A e. V -> ( wUniCl ` A ) e. WUni ) |
| 2 |
|
ssid |
|- ( wUniCl ` A ) C_ ( wUniCl ` A ) |
| 3 |
|
wuncss |
|- ( ( ( wUniCl ` A ) e. WUni /\ ( wUniCl ` A ) C_ ( wUniCl ` A ) ) -> ( wUniCl ` ( wUniCl ` A ) ) C_ ( wUniCl ` A ) ) |
| 4 |
1 2 3
|
sylancl |
|- ( A e. V -> ( wUniCl ` ( wUniCl ` A ) ) C_ ( wUniCl ` A ) ) |
| 5 |
|
wuncid |
|- ( ( wUniCl ` A ) e. WUni -> ( wUniCl ` A ) C_ ( wUniCl ` ( wUniCl ` A ) ) ) |
| 6 |
1 5
|
syl |
|- ( A e. V -> ( wUniCl ` A ) C_ ( wUniCl ` ( wUniCl ` A ) ) ) |
| 7 |
4 6
|
eqssd |
|- ( A e. V -> ( wUniCl ` ( wUniCl ` A ) ) = ( wUniCl ` A ) ) |