| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wunccl |
⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ 𝐴 ) ∈ WUni ) |
| 2 |
|
ssid |
⊢ ( wUniCl ‘ 𝐴 ) ⊆ ( wUniCl ‘ 𝐴 ) |
| 3 |
|
wuncss |
⊢ ( ( ( wUniCl ‘ 𝐴 ) ∈ WUni ∧ ( wUniCl ‘ 𝐴 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 4 |
1 2 3
|
sylancl |
⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 5 |
|
wuncid |
⊢ ( ( wUniCl ‘ 𝐴 ) ∈ WUni → ( wUniCl ‘ 𝐴 ) ⊆ ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) ) |
| 6 |
1 5
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ 𝐴 ) ⊆ ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) ) |
| 7 |
4 6
|
eqssd |
⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ ( wUniCl ‘ 𝐴 ) ) = ( wUniCl ‘ 𝐴 ) ) |