| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wuncval2.f |
⊢ 𝐹 = ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) |
| 2 |
|
wuncval2.u |
⊢ 𝑈 = ∪ ran 𝐹 |
| 3 |
1 2
|
wunex2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) ) |
| 4 |
|
wuncss |
⊢ ( ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) → ( wUniCl ‘ 𝐴 ) ⊆ 𝑈 ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ 𝐴 ) ⊆ 𝑈 ) |
| 6 |
|
frfnom |
⊢ ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) Fn ω |
| 7 |
1
|
fneq1i |
⊢ ( 𝐹 Fn ω ↔ ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) Fn ω ) |
| 8 |
6 7
|
mpbir |
⊢ 𝐹 Fn ω |
| 9 |
|
fniunfv |
⊢ ( 𝐹 Fn ω → ∪ 𝑚 ∈ ω ( 𝐹 ‘ 𝑚 ) = ∪ ran 𝐹 ) |
| 10 |
8 9
|
ax-mp |
⊢ ∪ 𝑚 ∈ ω ( 𝐹 ‘ 𝑚 ) = ∪ ran 𝐹 |
| 11 |
2 10
|
eqtr4i |
⊢ 𝑈 = ∪ 𝑚 ∈ ω ( 𝐹 ‘ 𝑚 ) |
| 12 |
|
fveq2 |
⊢ ( 𝑚 = ∅ → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ∅ ) ) |
| 13 |
12
|
sseq1d |
⊢ ( 𝑚 = ∅ → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( wUniCl ‘ 𝐴 ) ↔ ( 𝐹 ‘ ∅ ) ⊆ ( wUniCl ‘ 𝐴 ) ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 15 |
14
|
sseq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( wUniCl ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑚 = suc 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ suc 𝑛 ) ) |
| 17 |
16
|
sseq1d |
⊢ ( 𝑚 = suc 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( wUniCl ‘ 𝐴 ) ↔ ( 𝐹 ‘ suc 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ) |
| 18 |
|
1on |
⊢ 1o ∈ On |
| 19 |
|
unexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1o ∈ On ) → ( 𝐴 ∪ 1o ) ∈ V ) |
| 20 |
18 19
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∪ 1o ) ∈ V ) |
| 21 |
1
|
fveq1i |
⊢ ( 𝐹 ‘ ∅ ) = ( ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ‘ ∅ ) |
| 22 |
|
fr0g |
⊢ ( ( 𝐴 ∪ 1o ) ∈ V → ( ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ‘ ∅ ) = ( 𝐴 ∪ 1o ) ) |
| 23 |
21 22
|
eqtrid |
⊢ ( ( 𝐴 ∪ 1o ) ∈ V → ( 𝐹 ‘ ∅ ) = ( 𝐴 ∪ 1o ) ) |
| 24 |
20 23
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ ∅ ) = ( 𝐴 ∪ 1o ) ) |
| 25 |
|
wuncid |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 26 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 27 |
|
wunccl |
⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ 𝐴 ) ∈ WUni ) |
| 28 |
27
|
wun0 |
⊢ ( 𝐴 ∈ 𝑉 → ∅ ∈ ( wUniCl ‘ 𝐴 ) ) |
| 29 |
28
|
snssd |
⊢ ( 𝐴 ∈ 𝑉 → { ∅ } ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 30 |
26 29
|
eqsstrid |
⊢ ( 𝐴 ∈ 𝑉 → 1o ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 31 |
25 30
|
unssd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∪ 1o ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 32 |
24 31
|
eqsstrd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ ∅ ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 33 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → 𝑛 ∈ ω ) |
| 34 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
| 35 |
34
|
uniex |
⊢ ∪ ( 𝐹 ‘ 𝑛 ) ∈ V |
| 36 |
34 35
|
unex |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∪ ∪ ( 𝐹 ‘ 𝑛 ) ) ∈ V |
| 37 |
|
prex |
⊢ { 𝒫 𝑢 , ∪ 𝑢 } ∈ V |
| 38 |
34
|
mptex |
⊢ ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ∈ V |
| 39 |
38
|
rnex |
⊢ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ∈ V |
| 40 |
37 39
|
unex |
⊢ ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ∈ V |
| 41 |
34 40
|
iunex |
⊢ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ∈ V |
| 42 |
36 41
|
unex |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∪ ∪ ( 𝐹 ‘ 𝑛 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ) ∈ V |
| 43 |
|
id |
⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) |
| 44 |
|
unieq |
⊢ ( 𝑤 = 𝑧 → ∪ 𝑤 = ∪ 𝑧 ) |
| 45 |
43 44
|
uneq12d |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∪ ∪ 𝑤 ) = ( 𝑧 ∪ ∪ 𝑧 ) ) |
| 46 |
|
pweq |
⊢ ( 𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥 ) |
| 47 |
|
unieq |
⊢ ( 𝑢 = 𝑥 → ∪ 𝑢 = ∪ 𝑥 ) |
| 48 |
46 47
|
preq12d |
⊢ ( 𝑢 = 𝑥 → { 𝒫 𝑢 , ∪ 𝑢 } = { 𝒫 𝑥 , ∪ 𝑥 } ) |
| 49 |
|
preq1 |
⊢ ( 𝑢 = 𝑥 → { 𝑢 , 𝑣 } = { 𝑥 , 𝑣 } ) |
| 50 |
49
|
mpteq2dv |
⊢ ( 𝑢 = 𝑥 → ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ( 𝑣 ∈ 𝑤 ↦ { 𝑥 , 𝑣 } ) ) |
| 51 |
50
|
rneqd |
⊢ ( 𝑢 = 𝑥 → ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑣 ∈ 𝑤 ↦ { 𝑥 , 𝑣 } ) ) |
| 52 |
48 51
|
uneq12d |
⊢ ( 𝑢 = 𝑥 → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑥 , 𝑣 } ) ) ) |
| 53 |
52
|
cbviunv |
⊢ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑥 ∈ 𝑤 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑥 , 𝑣 } ) ) |
| 54 |
|
preq2 |
⊢ ( 𝑣 = 𝑦 → { 𝑥 , 𝑣 } = { 𝑥 , 𝑦 } ) |
| 55 |
54
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑤 ↦ { 𝑥 , 𝑣 } ) = ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) |
| 56 |
|
mpteq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) = ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) |
| 57 |
55 56
|
eqtrid |
⊢ ( 𝑤 = 𝑧 → ( 𝑣 ∈ 𝑤 ↦ { 𝑥 , 𝑣 } ) = ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) |
| 58 |
57
|
rneqd |
⊢ ( 𝑤 = 𝑧 → ran ( 𝑣 ∈ 𝑤 ↦ { 𝑥 , 𝑣 } ) = ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) |
| 59 |
58
|
uneq2d |
⊢ ( 𝑤 = 𝑧 → ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑥 , 𝑣 } ) ) = ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 60 |
43 59
|
iuneq12d |
⊢ ( 𝑤 = 𝑧 → ∪ 𝑥 ∈ 𝑤 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑥 , 𝑣 } ) ) = ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 61 |
53 60
|
eqtrid |
⊢ ( 𝑤 = 𝑧 → ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 62 |
45 61
|
uneq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∪ ∪ 𝑤 ) ∪ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) ) = ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) |
| 63 |
|
id |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑛 ) → 𝑤 = ( 𝐹 ‘ 𝑛 ) ) |
| 64 |
|
unieq |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑛 ) → ∪ 𝑤 = ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 65 |
63 64
|
uneq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑛 ) → ( 𝑤 ∪ ∪ 𝑤 ) = ( ( 𝐹 ‘ 𝑛 ) ∪ ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
| 66 |
|
mpteq1 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑛 ) → ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) |
| 67 |
66
|
rneqd |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑛 ) → ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) |
| 68 |
67
|
uneq2d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑛 ) → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 69 |
63 68
|
iuneq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑛 ) → ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 70 |
65 69
|
uneq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑛 ) → ( ( 𝑤 ∪ ∪ 𝑤 ) ∪ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ∪ ∪ ( 𝐹 ‘ 𝑛 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 71 |
1 62 70
|
frsucmpt2 |
⊢ ( ( 𝑛 ∈ ω ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∪ ∪ ( 𝐹 ‘ 𝑛 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) = ( ( ( 𝐹 ‘ 𝑛 ) ∪ ∪ ( 𝐹 ‘ 𝑛 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 72 |
33 42 71
|
sylancl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ( 𝐹 ‘ suc 𝑛 ) = ( ( ( 𝐹 ‘ 𝑛 ) ∪ ∪ ( 𝐹 ‘ 𝑛 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 73 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 74 |
27
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( wUniCl ‘ 𝐴 ) ∈ WUni ) |
| 75 |
73
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑢 ∈ ( wUniCl ‘ 𝐴 ) ) |
| 76 |
74 75
|
wunelss |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑢 ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 77 |
76
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ∀ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) 𝑢 ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 78 |
|
unissb |
⊢ ( ∪ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ↔ ∀ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) 𝑢 ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 79 |
77 78
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ∪ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 80 |
73 79
|
unssd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∪ ∪ ( 𝐹 ‘ 𝑛 ) ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 81 |
74 75
|
wunpw |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝒫 𝑢 ∈ ( wUniCl ‘ 𝐴 ) ) |
| 82 |
74 75
|
wununi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) → ∪ 𝑢 ∈ ( wUniCl ‘ 𝐴 ) ) |
| 83 |
81 82
|
prssd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) → { 𝒫 𝑢 , ∪ 𝑢 } ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 84 |
74
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( wUniCl ‘ 𝐴 ) ∈ WUni ) |
| 85 |
75
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑢 ∈ ( wUniCl ‘ 𝐴 ) ) |
| 86 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 87 |
86
|
sselda |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ) → 𝑣 ∈ ( wUniCl ‘ 𝐴 ) ) |
| 88 |
84 85 87
|
wunpr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ) → { 𝑢 , 𝑣 } ∈ ( wUniCl ‘ 𝐴 ) ) |
| 89 |
88
|
fmpttd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) : ( 𝐹 ‘ 𝑛 ) ⟶ ( wUniCl ‘ 𝐴 ) ) |
| 90 |
89
|
frnd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) → ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 91 |
83 90
|
unssd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 92 |
91
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ∀ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 93 |
|
iunss |
⊢ ( ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( wUniCl ‘ 𝐴 ) ↔ ∀ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 94 |
92 93
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 95 |
80 94
|
unssd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑛 ) ∪ ∪ ( 𝐹 ‘ 𝑛 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑛 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑛 ) ↦ { 𝑢 , 𝑣 } ) ) ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 96 |
72 95
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) ∧ ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) → ( 𝐹 ‘ suc 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 97 |
96
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑛 ∈ ω ) → ( ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) → ( 𝐹 ‘ suc 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ) |
| 98 |
97
|
expcom |
⊢ ( 𝑛 ∈ ω → ( 𝐴 ∈ 𝑉 → ( ( 𝐹 ‘ 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) → ( 𝐹 ‘ suc 𝑛 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ) ) |
| 99 |
13 15 17 32 98
|
finds2 |
⊢ ( 𝑚 ∈ ω → ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝑚 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ) |
| 100 |
99
|
com12 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑚 ∈ ω → ( 𝐹 ‘ 𝑚 ) ⊆ ( wUniCl ‘ 𝐴 ) ) ) |
| 101 |
100
|
ralrimiv |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑚 ∈ ω ( 𝐹 ‘ 𝑚 ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 102 |
|
iunss |
⊢ ( ∪ 𝑚 ∈ ω ( 𝐹 ‘ 𝑚 ) ⊆ ( wUniCl ‘ 𝐴 ) ↔ ∀ 𝑚 ∈ ω ( 𝐹 ‘ 𝑚 ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 103 |
101 102
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → ∪ 𝑚 ∈ ω ( 𝐹 ‘ 𝑚 ) ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 104 |
11 103
|
eqsstrid |
⊢ ( 𝐴 ∈ 𝑉 → 𝑈 ⊆ ( wUniCl ‘ 𝐴 ) ) |
| 105 |
5 104
|
eqssd |
⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ 𝐴 ) = 𝑈 ) |