Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A C_ WUni /\ A =/= (/) ) -> A C_ WUni ) |
2 |
1
|
sselda |
|- ( ( ( A C_ WUni /\ A =/= (/) ) /\ u e. A ) -> u e. WUni ) |
3 |
|
wuntr |
|- ( u e. WUni -> Tr u ) |
4 |
2 3
|
syl |
|- ( ( ( A C_ WUni /\ A =/= (/) ) /\ u e. A ) -> Tr u ) |
5 |
4
|
ralrimiva |
|- ( ( A C_ WUni /\ A =/= (/) ) -> A. u e. A Tr u ) |
6 |
|
trint |
|- ( A. u e. A Tr u -> Tr |^| A ) |
7 |
5 6
|
syl |
|- ( ( A C_ WUni /\ A =/= (/) ) -> Tr |^| A ) |
8 |
2
|
wun0 |
|- ( ( ( A C_ WUni /\ A =/= (/) ) /\ u e. A ) -> (/) e. u ) |
9 |
8
|
ralrimiva |
|- ( ( A C_ WUni /\ A =/= (/) ) -> A. u e. A (/) e. u ) |
10 |
|
0ex |
|- (/) e. _V |
11 |
10
|
elint2 |
|- ( (/) e. |^| A <-> A. u e. A (/) e. u ) |
12 |
9 11
|
sylibr |
|- ( ( A C_ WUni /\ A =/= (/) ) -> (/) e. |^| A ) |
13 |
12
|
ne0d |
|- ( ( A C_ WUni /\ A =/= (/) ) -> |^| A =/= (/) ) |
14 |
2
|
adantlr |
|- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) -> u e. WUni ) |
15 |
|
intss1 |
|- ( u e. A -> |^| A C_ u ) |
16 |
15
|
adantl |
|- ( ( ( A C_ WUni /\ A =/= (/) ) /\ u e. A ) -> |^| A C_ u ) |
17 |
16
|
sselda |
|- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ u e. A ) /\ x e. |^| A ) -> x e. u ) |
18 |
17
|
an32s |
|- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) -> x e. u ) |
19 |
14 18
|
wununi |
|- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) -> U. x e. u ) |
20 |
19
|
ralrimiva |
|- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> A. u e. A U. x e. u ) |
21 |
|
vuniex |
|- U. x e. _V |
22 |
21
|
elint2 |
|- ( U. x e. |^| A <-> A. u e. A U. x e. u ) |
23 |
20 22
|
sylibr |
|- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> U. x e. |^| A ) |
24 |
14 18
|
wunpw |
|- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) -> ~P x e. u ) |
25 |
24
|
ralrimiva |
|- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> A. u e. A ~P x e. u ) |
26 |
|
vpwex |
|- ~P x e. _V |
27 |
26
|
elint2 |
|- ( ~P x e. |^| A <-> A. u e. A ~P x e. u ) |
28 |
25 27
|
sylibr |
|- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> ~P x e. |^| A ) |
29 |
14
|
adantlr |
|- ( ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) /\ u e. A ) -> u e. WUni ) |
30 |
18
|
adantlr |
|- ( ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) /\ u e. A ) -> x e. u ) |
31 |
15
|
adantl |
|- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) -> |^| A C_ u ) |
32 |
31
|
sselda |
|- ( ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ u e. A ) /\ y e. |^| A ) -> y e. u ) |
33 |
32
|
an32s |
|- ( ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) /\ u e. A ) -> y e. u ) |
34 |
29 30 33
|
wunpr |
|- ( ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) /\ u e. A ) -> { x , y } e. u ) |
35 |
34
|
ralrimiva |
|- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) -> A. u e. A { x , y } e. u ) |
36 |
|
prex |
|- { x , y } e. _V |
37 |
36
|
elint2 |
|- ( { x , y } e. |^| A <-> A. u e. A { x , y } e. u ) |
38 |
35 37
|
sylibr |
|- ( ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) /\ y e. |^| A ) -> { x , y } e. |^| A ) |
39 |
38
|
ralrimiva |
|- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> A. y e. |^| A { x , y } e. |^| A ) |
40 |
23 28 39
|
3jca |
|- ( ( ( A C_ WUni /\ A =/= (/) ) /\ x e. |^| A ) -> ( U. x e. |^| A /\ ~P x e. |^| A /\ A. y e. |^| A { x , y } e. |^| A ) ) |
41 |
40
|
ralrimiva |
|- ( ( A C_ WUni /\ A =/= (/) ) -> A. x e. |^| A ( U. x e. |^| A /\ ~P x e. |^| A /\ A. y e. |^| A { x , y } e. |^| A ) ) |
42 |
|
simpr |
|- ( ( A C_ WUni /\ A =/= (/) ) -> A =/= (/) ) |
43 |
|
intex |
|- ( A =/= (/) <-> |^| A e. _V ) |
44 |
42 43
|
sylib |
|- ( ( A C_ WUni /\ A =/= (/) ) -> |^| A e. _V ) |
45 |
|
iswun |
|- ( |^| A e. _V -> ( |^| A e. WUni <-> ( Tr |^| A /\ |^| A =/= (/) /\ A. x e. |^| A ( U. x e. |^| A /\ ~P x e. |^| A /\ A. y e. |^| A { x , y } e. |^| A ) ) ) ) |
46 |
44 45
|
syl |
|- ( ( A C_ WUni /\ A =/= (/) ) -> ( |^| A e. WUni <-> ( Tr |^| A /\ |^| A =/= (/) /\ A. x e. |^| A ( U. x e. |^| A /\ ~P x e. |^| A /\ A. y e. |^| A { x , y } e. |^| A ) ) ) ) |
47 |
7 13 41 46
|
mpbir3and |
|- ( ( A C_ WUni /\ A =/= (/) ) -> |^| A e. WUni ) |