Metamath Proof Explorer


Theorem wunop

Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 φUWUni
wunop.2 φAU
wunop.3 φBU
Assertion wunop φABU

Proof

Step Hyp Ref Expression
1 wun0.1 φUWUni
2 wunop.2 φAU
3 wunop.3 φBU
4 dfopg AUBUAB=AAB
5 2 3 4 syl2anc φAB=AAB
6 1 2 wunsn φAU
7 1 2 3 wunpr φABU
8 1 6 7 wunpr φAABU
9 5 8 eqeltrd φABU