Metamath Proof Explorer
Description: A number is less than or equal to itself plus a nonnegative extended
real. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
xadd0ge2.a |
|
|
|
xadd0ge2.b |
|
|
Assertion |
xadd0ge2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xadd0ge2.a |
|
| 2 |
|
xadd0ge2.b |
|
| 3 |
1 2
|
xadd0ge |
|
| 4 |
|
iccssxr |
|
| 5 |
4 2
|
sselid |
|
| 6 |
1 5
|
xaddcomd |
|
| 7 |
3 6
|
breqtrd |
|