Metamath Proof Explorer


Theorem xaddcl

Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddcl A*B*A+𝑒B*

Proof

Step Hyp Ref Expression
1 xaddf +𝑒:*×**
2 1 fovcl A*B*A+𝑒B*