Metamath Proof Explorer


Theorem xdiv0rp

Description: Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion xdiv0rp A+0÷𝑒A=0

Proof

Step Hyp Ref Expression
1 rprene0 A+AA0
2 xdiv0 AA00÷𝑒A=0
3 1 2 syl A+0÷𝑒A=0