Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Decimal expansion
Division in the extended real number system
xdivid
Next ⟩
xdiv0
Metamath Proof Explorer
Ascii
Unicode
Theorem
xdivid
Description:
A number divided by itself is one.
(Contributed by
Thierry Arnoux
, 18-Dec-2016)
Ref
Expression
Assertion
xdivid
⊢
A
∈
ℝ
∧
A
≠
0
→
A
÷
𝑒
A
=
1
Proof
Step
Hyp
Ref
Expression
1
rexdiv
⊢
A
∈
ℝ
∧
A
∈
ℝ
∧
A
≠
0
→
A
÷
𝑒
A
=
A
A
2
1
3anidm12
⊢
A
∈
ℝ
∧
A
≠
0
→
A
÷
𝑒
A
=
A
A
3
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
4
divid
⊢
A
∈
ℂ
∧
A
≠
0
→
A
A
=
1
5
3
4
sylan
⊢
A
∈
ℝ
∧
A
≠
0
→
A
A
=
1
6
2
5
eqtrd
⊢
A
∈
ℝ
∧
A
≠
0
→
A
÷
𝑒
A
=
1