Metamath Proof Explorer


Theorem xlimres

Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimres.1 φF*𝑝𝑚
xlimres.2 φM
Assertion xlimres φF*AFM*A

Proof

Step Hyp Ref Expression
1 xlimres.1 φF*𝑝𝑚
2 xlimres.2 φM
3 letopon ordTopTopOn*
4 3 a1i φordTopTopOn*
5 4 1 2 lmres φFtordTopAFMtordTopA
6 df-xlim *=tordTop
7 6 breqi F*AFtordTopA
8 6 breqi FM*AFMtordTopA
9 5 7 8 3bitr4g φF*AFM*A