Metamath Proof Explorer


Theorem xmetf

Description: Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmetf D∞MetXD:X×X*

Proof

Step Hyp Ref Expression
1 elfvdm D∞MetXXdom∞Met
2 isxmet Xdom∞MetD∞MetXD:X×X*xXyXxDy=0x=yzXxDyzDx+𝑒zDy
3 1 2 syl D∞MetXD∞MetXD:X×X*xXyXxDy=0x=yzXxDyzDx+𝑒zDy
4 3 ibi D∞MetXD:X×X*xXyXxDy=0x=yzXxDyzDx+𝑒zDy
5 4 simpld D∞MetXD:X×X*