Metamath Proof Explorer


Theorem xmssym

Description: The distance function in an extended metric space is symmetric. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X=BaseM
mscl.d D=distM
Assertion xmssym M∞MetSpAXBXADB=BDA

Proof

Step Hyp Ref Expression
1 mscl.x X=BaseM
2 mscl.d D=distM
3 1 2 xmsxmet2 M∞MetSpDX×X∞MetX
4 xmetsym DX×X∞MetXAXBXADX×XB=BDX×XA
5 3 4 syl3an1 M∞MetSpAXBXADX×XB=BDX×XA
6 simp2 M∞MetSpAXBXAX
7 simp3 M∞MetSpAXBXBX
8 6 7 ovresd M∞MetSpAXBXADX×XB=ADB
9 7 6 ovresd M∞MetSpAXBXBDX×XA=BDA
10 5 8 9 3eqtr3d M∞MetSpAXBXADB=BDA