Metamath Proof Explorer


Theorem xmstri2

Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X=BaseM
mscl.d D=distM
Assertion xmstri2 M∞MetSpCXAXBXADBCDA+𝑒CDB

Proof

Step Hyp Ref Expression
1 mscl.x X=BaseM
2 mscl.d D=distM
3 1 2 xmsxmet2 M∞MetSpDX×X∞MetX
4 xmettri2 DX×X∞MetXCXAXBXADX×XBCDX×XA+𝑒CDX×XB
5 3 4 sylan M∞MetSpCXAXBXADX×XBCDX×XA+𝑒CDX×XB
6 simpr2 M∞MetSpCXAXBXAX
7 simpr3 M∞MetSpCXAXBXBX
8 6 7 ovresd M∞MetSpCXAXBXADX×XB=ADB
9 simpr1 M∞MetSpCXAXBXCX
10 9 6 ovresd M∞MetSpCXAXBXCDX×XA=CDA
11 9 7 ovresd M∞MetSpCXAXBXCDX×XB=CDB
12 10 11 oveq12d M∞MetSpCXAXBXCDX×XA+𝑒CDX×XB=CDA+𝑒CDB
13 5 8 12 3brtr3d M∞MetSpCXAXBXADBCDA+𝑒CDB