Metamath Proof Explorer


Theorem xmstri3

Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X=BaseM
mscl.d D=distM
Assertion xmstri3 M∞MetSpAXBXCXADBADC+𝑒BDC

Proof

Step Hyp Ref Expression
1 mscl.x X=BaseM
2 mscl.d D=distM
3 1 2 xmsxmet2 M∞MetSpDX×X∞MetX
4 xmettri3 DX×X∞MetXAXBXCXADX×XBADX×XC+𝑒BDX×XC
5 3 4 sylan M∞MetSpAXBXCXADX×XBADX×XC+𝑒BDX×XC
6 simpr1 M∞MetSpAXBXCXAX
7 simpr2 M∞MetSpAXBXCXBX
8 6 7 ovresd M∞MetSpAXBXCXADX×XB=ADB
9 simpr3 M∞MetSpAXBXCXCX
10 6 9 ovresd M∞MetSpAXBXCXADX×XC=ADC
11 7 9 ovresd M∞MetSpAXBXCXBDX×XC=BDC
12 10 11 oveq12d M∞MetSpAXBXCXADX×XC+𝑒BDX×XC=ADC+𝑒BDC
13 5 8 12 3brtr3d M∞MetSpAXBXCXADBADC+𝑒BDC