Metamath Proof Explorer


Theorem xmsxmet

Description: The distance function, suitably truncated, is an extended metric on X . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses msf.x X=BaseM
msf.d D=distMX×X
Assertion xmsxmet M∞MetSpD∞MetX

Proof

Step Hyp Ref Expression
1 msf.x X=BaseM
2 msf.d D=distMX×X
3 eqid TopOpenM=TopOpenM
4 3 1 2 isxms2 M∞MetSpD∞MetXTopOpenM=MetOpenD
5 4 simplbi M∞MetSpD∞MetX