Metamath Proof Explorer


Theorem xmul02

Description: Extended real version of mul02 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmul02 A*0𝑒A=0

Proof

Step Hyp Ref Expression
1 0xr 0*
2 xmulcom 0*A*0𝑒A=A𝑒0
3 1 2 mpan A*0𝑒A=A𝑒0
4 xmul01 A*A𝑒0=0
5 3 4 eqtrd A*0𝑒A=0