Metamath Proof Explorer


Theorem xmulmnf2

Description: Multiplication by minus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulmnf2 A*0<A−∞𝑒A=−∞

Proof

Step Hyp Ref Expression
1 mnfxr −∞*
2 xmulcom −∞*A*−∞𝑒A=A𝑒−∞
3 1 2 mpan A*−∞𝑒A=A𝑒−∞
4 3 adantr A*0<A−∞𝑒A=A𝑒−∞
5 xmulmnf1 A*0<AA𝑒−∞=−∞
6 4 5 eqtrd A*0<A−∞𝑒A=−∞